[1]Michiuchi M, Nambu S, Ishimoto Y, et al. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation[J]. Acta Materialia, 2009, 57(18): 5283-5291.
[2]Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening[J]. Materials Research Letters, 2021, 9(7): 315-321.
[3]Li H, Gao S, Tomota Y, et al. Mechanical response of dislocation interaction with grain boundary in ultrafine-grained interstitial-free steel[J]. Acta Materialia, 2021, 206: 116621.
[4]Ghosh S, Mula S. Improvement of fracture toughness of Ti+Nb stabilized microalloyed and interstitial free steels processed through single phase regime control multiaxial forging[J]. Materials Science and Engineering A, 2020, 772: 138817.
[5]Ghosh S, Kömi J, Mula S. Flow stress characteristics and design of innovative 3-steps multiphase control thermomechanical processing to produce ultrafine grained bulk steels[J]. Materials and Design, 2020, 186: 108297
[6]Ghosh S, Bibhanshu N, Suwas S, et al. Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility[J]. Materials Science and Engineering A, 2021, 820: 141540.
[7]Ghosh S, Mula S. Fracture toughness characteristics of ultrafine grained Nb-Ti stabilized microalloyed and interstitial free steels processed by advanced multiphase control rolling[J]. Materials Characterization, 2020, 159: 110003.
[8]Järvenpää A, Ghosh S, Khosravifard A, et al. A new processing route to develop nano-grained structure of a TRIP-aided austenitic stainless-steel using double reversion fast-heating annealing[J]. Materials Science and Engineering A, 2021, 808: 140917.
[9]Ghosh S, Mula S, Kumar Mondal D. Development of ultrahigh strength cast-grade microalloyed steel by simple innovative heat treatment techniques for industrial applications[J]. Materials Science and Engineering A, 2017, 700: 667-680.
[10]靳东亮, 王高峰, 马喜强, 等. 淬火低合金中碳钢的力学性能[J]. 金属热处理, 2024, 49(2): 172-178.
Jin Dongliang, Wang Gaofeng, Ma Xiqiang, et al. Mechanical properties of quenched low alloy medium-carbon steel[J]. Heat Treatment of Metals, 2024, 49(2): 172-178.
[11]姜英花, 李 钊, 阳 锋, 等. 淬火、配分温度对1180 MPa淬火配分钢力学性能和扩孔性的影响[J]. 金属热处理, 2023, 48(12): 60-64.
Jiang Yinghua, Li Zhao, Yang Feng, et al. Effect of quenching and partitioning temperature on mechanical properties and hole expansion property of 1180 MPa Q&P steel[J]. Heat Treatment of Metals, 2023, 48(12): 60-64.
[12]王 毅, 韩 杰, 刘 超, 等. DQ-T工艺对1000 MPa级高强钢组织和性能的影响[J]. 金属热处理, 2023, 48(9): 30-35.
Wang Yi, Han Jie, Liu Chao, et al. Influence of DQ-T process on microstructure and properties of 1000 MPa high strength steel[J]. Heat Treatment of Metals, 2023, 48(9): 30-35.
[13]Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501-14505.
[14]Huang C, Wang Y, Ma X, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate[J]. Materials Today, 2018, 21(7): 713-719.
[15]Tan C, Chew Y, Duan R, et al. Additive manufacturing of multi-scale heterostructured high-strength steels[J]. Materials Research Letters, 2021, 9(7): 291-299.
[16]Li J, Wang S, Mao Q, et al. Soft/hard copper/bronze laminates with superior mechanical properties[J]. Materials Science and Engineering A, 2019, 756: 213-218.
[17]Zhu Y, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction[J]. Materials Research Letters, 2021, 9(1): 1-31.
[18]Wu X, Zhu Y. Heterogeneous materials: A new class of materials with unprecedented mechanical properties[J]. Materials Research Letters, 2017, 5(8): 527-532.
[19]Wang Y F, Wang M S, Fang X T, et al. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces[J]. International Journal of Plasticity, 2019, 123: 196-207.
[20]Wang Y, Wei Y, Zhao Z, et al. Mechanical response of the constrained nanostructured layer in heterogeneous laminate[J]. Scripta Materialia, 2022, 207: 114310.
[21]Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7(10): 393-398.
[22]Li J, Zhao M, Jin L, et al. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys[J]. Journal of Materials Science and Technology, 2021, 71: 195-200.
[23]Pierman A P, Bouaziz O, Pardoen T, et al. The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Materialia, 2014, 73: 298-311.
[24]Balbi M, Alvarez-Armas I, Armas A. Effect of holding time at an intercritical temperature on the microstructure and tensile properties of a ferrite-martensite dual phase steel[J]. Materials Science and Engineering A, 2018, 733: 1-8.
[25]Mirzadeh H, Alibeyki M, Najafi M. Unraveling the Initial microstructure effects on mechanical properties and work-hardening capacity of hual-phase steel[J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4565-4573.
[26]Kalashami A G, Kermanpur A, Najafizadeh A, et al. Development of a high strength and ductile Nb-bearing dual phase steel by cold-rolling and intercritical annealing of the ferrite-martensite microstructures[J]. Materials Science and Engineering A, 2016, 658: 355-366.
[27]Alibeyki M, Mirzadeh H, Najafi M. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite[J]. Vacuum, 2018, 155: 147-152.
[28]Etesami S, Enayati M, Kalashami A G. Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing[J]. Materials Science and Engineering A, 2017, 682: 296-303.
[29]Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019, 54(19): 12898-12910.
[30]Gao B, Hu R, Pan Z, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content[J]. Journal of Materials Science and Technology, 2021, 65: 29-37.
[31]Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of eual-phase steel[J]. Metallurgical and Materials Transactions A, 2017, 48: 4565-4573.
[32]Gao B, Lai Q, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling[J]. Science Advances, 2020, 6(39): 8169-8192.
[33]Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure[J]. Materials Research Letters, 2016, 4(3): 145-151.
[34]Ren J, Li C, Han Y, et al. Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel[J]. Materials Science and Engineering A, 2021, 812: 141080.
[35]Güral A, Tekeli S, Ando T. Tensile properties of iron-based P/M steels with ferrite+martensite microstructure[J]. Journal of Materials Science, 2006, 41(23): 7894-7901.
[36]Das D, Chattopadhyay P P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel[J]. Journal of Materials Science, 2009, 44(11): 2957-2965.
[37]Zhang J, Di H, Deng Y, et al. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel[J]. Materials Science and Engineering A, 2015, 627: 230-240.
[38]Zheng C, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Materialia, 2013, 61(14): 5504-5517.
[39]Etesami S A, Enayati M H, Kalashami A G. Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing[J]. Materials Science and Engineering A, 2017, 682: 296-303.
[40]Pan Z, Gao B, Lai Q, et al. Microstructure and mechanical properties of a cold-rolled ultrafine-grained dual-phase steel[J]. Materials, 2018, 11(8): 1399.
[41]Mazaheri Y, Kermanpur A, Najafizadeh A. A novel route for development of ultrahigh strength dual phase steels[J]. Materials Science and Engineering A, 2014, 619: 1-11.
[42]Papa Rao M, Subramanya Sarma V, Sankaran S. Microstructure and mechanical properties of V-Nb, microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing[J]. Metallurgical and Materials Transactions A, 2016, 48(3): 1176-1188.
[43]Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54(5): 1279-1288.
[44]Lai Q, Bouaziz O, Gouné M, et al. Damage and fracture of dual-phase steels: Influence of martensite volume fraction[J]. Materials Science and Engineering A, 2015, 646: 322-331.
[45]Zheng X, Ghassemi-Armaki H, Srivastava A. Structural and microstructural influence on deformation and fracture of dual-phase steels[J]. Materials Science and Engineering A, 2020, 774: 138924.
[46]Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging[J]. Acta Materialia, 2011, 59(2): 658-670.
[47]Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel[J]. Materials Science and Engineering A, 2014, 604: 135-141.
[48]Zhang J, Di H, Deng Y, et al. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel[J]. Materials Science and Engineering A, 2015, 627: 230-240.
[49]Kunio T, Shimizu M, Yamada K, et al. An effect of the second phase morphology on the tensile fracture characteristics of carbon steels[J]. Engineering Fracture Mechanics, 1975, 7(3): 411-417.
[50]Yerra S K, Martin G, Véron M, et al. Ductile fracture initiated by interface nucleation in two-phase elastoplastic systems[J]. Engineering Fracture Mechanics, 2013, 102: 77-100.
[51]Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Applied Physical Sciences, 2015, 112(47): 14501-14505.
[52]Zhu Y, Wu X. Heterostructured materials[J]. Progress in Materials Science, 2023, 131: 101019.
[53]Zhu Y. Introduction to heterostructured materials: A fast emerging field[J]. Metallurgical and Materials Transactions A, 2021, 52(11): 4715-4726.
[54]Zhu Y, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction[J]. Materials Research Letters, 2020, 9(1): 1-31. |