[1]李 毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(S1): 280-282. Li Yi, Zhao Yongqing, Zeng Weidong. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282. [2]胡生双, 肖 君, 赵 虎, 等. 固溶冷却方式对TB15钛合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(10): 160-163. Hu Shengshuang, Xiao Jun, Zhao Hu, et al. Effect of solution cooling method on microstructure and mechanical properties of TB15 titanium alloy[J]. Heat Treatment of Metals, 2022, 47(10): 160-163. [3]张 旻, 帅美荣, 李海斌, 等. 热处理对不同形变工艺钛合金棒材显微组织与性能的影响[J]. 材料热处理学报, 2022, 43(3): 35-42. Zhang Min, Shuai Meirong, Li Haibin, et al. Effect of heat treatment on microstructure and properties of titanium alloy bars prepared by different deformation processes[J]. Transactions of Materials and Heat Treatment, 2022, 43(3): 35-42. [4]Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on high cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy[J]. International Journal of Fatigue, 2017, 94: 30-40. [5]Xu T, Li J, Zhang F, et al. Microstructure evolution during cold-deformation and aging response after annealing of TB8 titanium alloy[J]. Rare Metal Materials and Engineering, 2016, 45(3): 575-580. [6]Lee W T, Li S, Nam T H. Effect of cold rolling and hot rolling on recrystallization texture and superelastic properties of Ti-30Zr-10Nb-2Sn shape memory alloy[J]. Science of Advanced Materials, 2021, 13(11): 2265-2269. [7]张海羲, 刘元彩, 李 欣. 冷轧Ti-15Mo合金的再结晶行为及动力学分析[J]. 青岛理工大学学报, 2023, 44(3): 83-89. Zhang Haixi, Liu Yuancai, Li Xin. Recrystallization behavior and kinetic analysis of cold-rolled Ti-15Mo alloy[J]. Journal of Qingdao University of Technology, 2023, 44(3): 83-89. [8]Xu T W, Li J S, Zhang S S, et al. Cold deformation behavior of the Ti-15Mo-3Al-2.7Nb-0.2Si alloy and its effect on alpha precipitation and tensile properties in aging treatment[J]. Journal of Alloys and Compounds, 2016, 682: 166235. [9]Bhattacharjee A, Varma V K, Kamat S V, et al. Influence of β grain size on tensile behavior and ductile fracture toughness of titanium alloy Ti-10V-2Fe-3Al[J]. Metallurgical and Materials Transactions A, 2006, 37(5): 1423-1433. [10]Zhou W, Liu X H, Feng J, et al. Grain growth kinetics of TB18 titanium alloy[J]. Rare Metal Materials and Engineering, 2022, 51(9): 3129-3132. [11]葛 鹏, 赵永庆, 周 廉. 一种新型高强度亚稳β钛合金Ti-B20[J]. 稀有金属材料与工程, 2005, 34(5): 790-794. Ge Peng, Zhao Yongqing, Zhou Lian. A new type metastable β titanium alloy Ti-B20 with high strength[J]. Rare Metal Materials and Engineering, 2005, 34(5): 790-794. [12]Ge P P, Xiang S, Tan Y B, et al. Studies on the β→α phase transition kinetics of Ti-3.5Al-5Mo-4V alloy under isothermal conditions by X-ray diffraction[J]. Metals, 2020, 10(1): 90. [13]Rahoma H K S, Chen Y Y, Wang X P, et al. Influence of (TiC+TiB) on the microstructure and tensile properties of Ti-B20 matrix alloy[J]. Journal of Alloys and Compounds, 2015, 627: 415-422. [14]徐彦强. Ti-B20高强β钛合金压缩性能及高温变形行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. Xu Yanqiang. Research on compressive properties and high temperature deformation behavior of Ti-B20 high strength β titanium alloy[D]. Harbin: Harbin Institute of Technology, 2017. [15]Hu S, Xiang S, Tan Y, et al. Synchronous enhancement of the strength and ductility in a metastable β-Ti alloy by a new refined α phase mechanism[J]. Journal of Alloys and Compounds, 2022, 922: 166227. [16]冀宣名, 胡 爽. 时效处理对不同热轧Ti-3.5Al-5Mo-4V钛合金组织与性能的影响[J]. 材料热处理学报, 2022, 43(10): 27-33. Ji Xuanming, Hu Shuang. Effect of heat treatment process on microstructure and mechanical properties of hot-rolled Ti-3.5Al-5Mo-4V titanium alloy[J]. Transactions of Materials and Heat Treatment, 2022, 43(10): 27-33. [17]Ji X M, Xiang S, Zeng M T, et al. Effects of recrystallization on the microstructure and mechanical properties of cold-rolled Ti-B20 alloy[J]. Journal of Materials Engineering and Performance, 2023, 33: 845-863. [18]Ji X M, Xiang S, Tan Y B, et al. Microstructure, texture evolution, and aging behavior of a cold-rolled Ti-B20 alloy[J]. Advanced Engineering Materials, 2023, 25(11): 2201776. [19]卢金文, 赵永庆, 葛 鹏, 等. Ti-Mo系钛合金β晶粒长大规律及晶粒尺寸对硬度的影响[J]. 稀有金属材料与工程, 2013, 42(11): 2269-2273. Lu Jinwen, Zhao Yongqing, Ge Peng, et al. Growth behavior of β-phase grain and influence of its grain size on hardness in Ti-Mo alloys[J]. Rare Metal Materials and Engineering, 2013, 42(11): 2269-2273. [20]吝 媛, 杨 奇, 黄 拓, 等. Ti9148钛合金β相晶粒长大行为[J]. 有色金属科学与工程, 2022, 13(2): 93-97. Lin Yuan, Yang Qi, Huang Tuo, et al. Grain growth behavior in the β-phase of Ti9148 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 93-97. [21]Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys[J]. Materials Science and Engineering A, 2000, 283(1/2): 17-24. [22]Cherukuri B, Srinivasan R, Tamirisakandala S, et al. The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti-15Mo-2.6Nb-3Al-0.2Si[J]. Scripta Materialia, 2009, 60(7): 496-499. [23]崔 霞, 杜海明, 鲁世强, 等. TB6钛合金β相区加热下晶粒生长行为[J]. 南昌航空大学学报(自然科学版), 2016, 30(4): 1-6. Cui Xia, Du Haiming, Lu Shiqiang, et al. β-grain growth behavior of TB6 titanium alloy heated at β-phase region[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2016, 30(4): 1-6. [24]Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013, 550: 23-30. [25]Aeby-Gautier E, Bruneseaux F, Teixeira J D C, et al. Microstructural formation in Ti alloys: In-situ characterization of phase transformation kinetics[J]. JOM, 2007, 59(1): 54-58. [26]Du Z, Xiao S, Xu L, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy[J]. Materials and Design, 2014, 55: 183-190. |