[1]Nishiyama K, Matsui R, Ikeda Y, et al. Damping properties of a sintered Mg-Cu-Mn alloy[J]. Journal of Alloys and Compounds, 2003, 355(1/2): 22-25. [2]Wu Y W, Wu K, Deng K K, et al. Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles[J]. Materials and Design, 2010, 31(10): 4862-4865. [3]Watanabe H, Sasakura Y, Ikeo N, et al. Effect of deformation twins on damping capacity in extruded pure magnesium[J]. Journal of Alloys and Compounds, 2015, 626: 60-64. [4]Mukai T, Yamanoi M, Watanabe H, et al. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure[J]. Scripta Materialia, 2001, 45(1): 89-94. [5]任 政, 张兴国, 房灿峰, 等. Mg-Al基镁合金晶粒细化的研究进展[J]. 材料导报, 2008, 22(1): 98-101. Ren Zheng, Zhang Xingguo, Fang Canfeng, et al. Research and development of grain refinement of Mg-Al magnesium alloys[J]. Materials Reports, 2008, 22(1): 98-101. [6]万迪庆, 于 田. 高阻尼铸造Mg-Si合金研究现状及展望[J]. 铸造, 2012, 61(10): 1135-1137. Wan Diqing, Yu Tian. Research status and prospect of high damping casting Mg-Si alloys[J]. Foundry, 2012, 61(10): 1135-1137. [7]Sugimoto K, Niiya K, Okamoto T, et al. A study of damping capacity in magnesium alloys[J]. Transactions of the Japan Institute of Metals, 1977, 18(3): 277-288. [8]Granato A V, Lucke K. Application of dislocation theory to internal friction phenomena at high frequencies[J]. Journal of Applied Physics, 1956, 27(7): 789-805. [9]Granato A V, Lucke K. Theory of mechanical damping due to dislocations[J]. Journal of Applied Physics, 1956, 27(6): 583-593. [10]马家轩, 韦 琪, 魏福安, 等. Mg-3Al-1Zn-xSn镁合金的温度阻尼特性[J]. 特种铸造及有色合金, 2020, 40(12): 1405-1410. Ma Jiaxuan, Wei Qi, Wei Fuan, et al. Temperature damping characteristics of Mg-3Al-1Zn-xSn magnesium alloy[J]. Special Casting and Nonferrous Alloys, 2020, 40(12): 1405-1410. [11]周明扬, 苏鑫鑫, 任凌宝, 等. 挤压态Mg-3Al-3Zn-1Ti-0.6RE镁合金的高温拉伸变形行为[J]. 稀有金属材料与工程, 2017, 46(8): 2149-2155. Zhou Mingyang, Su Xinxin, Ren Lingbao, et al. Tensile deformation behavior of as-extruded Mg-3Al-3Zn-1Ti-0.6RE magnesium alloy at elevated temperature[J]. Rare Metal Materials and Engineering, 2017, 46(8): 2149-2155. [12]Liu X, Liu Z, Liu G, et al. First-principles study of solid solution strengthening in Mg-X(X=Al, Er) alloys[J]. Bulletin of Materials Science, 2019, 42(1): 16. [13]Somekawa H, Tsuru T. Effect of alloying elements on grain boundary sliding in magnesium binary alloys: Experimental and numerical studies[J]. Materials Science and Engineering A, 2017, 708: 267-273. [14]Somekawa H, Inoue T, Tsuzaki K. Effect of solute atoms on fracture toughness in dilute magnesium alloys[J]. Philosophical Magazine, 2013, 93(36): 4582-4592. [15]Somekawa H, Schuh C A. Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys[J]. Acta Materialia, 2011, 59(20): 7554-7563. [16]Hu Y, Zhang C, Meng W, et al. Microstructure, mechanical and corrosion properties of Mg-4Al-2Sn-xY-0.4Mn alloys[J]. Journal of Alloys and Compounds, 2017, 727: 491-500. [17]Tahreen N, Zhang D F, Pan F S, et al. Strengthening mechanisms in magnesium alloys containing ternary Ⅰ, W and LPSO phases[J]. Journal of Materials Science and Technology, 2018, 34(7): 1110-1118. [18]胡小石. 热处理和变形对镁合金低频阻尼性能的影响及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. Hu Xiaoshi. Effect of heat treatment and deformation on low-frequency damping properties of magnesium alloys and mechanism research[D]. Harbin: Harbin Institute of Technology, 2007. [19]刘华燊, 孙有平, 何江美, 等. 轧制压下量对ZK60镁合金组织和阻尼性能的影响[J]. 矿冶工程, 2023, 43(2): 154-159. Liu Huashen, Sun Youping, He Jiangmei, et al. Effect of rolling reduction on microstructure and damping properties of ZK60 magnesium alloy[J]. Mining and Metallurgical Engineering, 2023, 43(2): 154-159. [20]焦琰珂, 熊 毅, 姚 怀. Al含量对Mg-2.0Zn-0.4Mn合金组织、力学性能及耐腐蚀性能的影响[J]. 材料热处理学报, 2022, 43(10): 10-18. Jiao Yanke, Xiong Yi, Yao Huai. Effect of Al content on microstructure, mechanical properties and corrosion resistance of Mg-2.0Zn-0.4Mn alloy[J]. Transactions of Materials and Heat Treatment, 2022, 43(10): 10-18. [21]Pan H, Pan F, Wang X, et al. Correlation on the electrical and thermal conductivity for binary Mg-Al and Mg-Zn alloys[J]. International Journal of Thermophysics, 2013, 34(7): 1336-1346. [22]秦 晨, 赵莉萍, 陈利超, 等. Al含量对含稀土AZ系镁合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 68-72. Qin Chen, Zhao Liping, Chen Lichao, et al. Effect of Al content on microstructure and properties of AZ series magnesium alloy containing rare earth[J]. Heat Treatment of Metals, 2020, 45(3): 68-72. [23]肖 雪, 刘怀海, 耿家源, 等. 挤压态Mg-9Li-xAl-0.6Y合金组织与力学性能研究[J]. 有色金属工程, 2021, 11(4): 1-7. Xiao Xue, Liu Huaihai, Geng Jiayuan, et al. Microstructure and mechanical properties of as-extruded Mg-9Li-xAl-0.6Y alloys[J]. Nonferrous Metals Engineering, 2021, 11(4): 1-7. [24]Butt M Z, Feltham P. Solid-solution hardening[J]. Acta Metallurgica, 1978, 28(10): 2557-2576. [25]Zhu S Q, Yan H G, Chen J H, et al. Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range[J]. Materials Science and Engineering A, 2013, 559: 765-772. [26]陈连生, 郑亚琪, 张 源, 等. 医用可降解镁合金腐蚀疲劳行为研究进展[J]. 稀有金属材料与工程, 2021, 50(9): 3375-3387. Chen Liansheng, Zheng Yaqi, Zhang Yuan, et al. Research progress on corrosion fatigue behavior of biomedical degradable magnesium-based alloys[J]. Rare Metal Materials and Engineering, 2021, 50(9): 3375-3387. [27]Rivière A. Measurement of high damping: Techniques and analysis[J]. Journal of Alloys and Compounds, 2003, 355(1/2): 201-206. [28]Jun J H. Damping behaviors of as-cast and solution-treated AZ91-Ca magnesium alloys[J]. Journal of Alloys and Compounds, 2014, 610: 169-172. [29]王 金, 雷 波, 李育川, 等. 热处理对Cu-Al-Mn形状记忆合金阻尼能力的影响[J]. 延安大学学报(自然科学版), 2022, 41(3): 97-101. Wang Jin, Lei Bo, Li Yuchuan, et al. Effect of thermal treatment on the damping capacity of Cu-Al-Mn shape memory alloy[J]. Journal of Yan'an University(Natural Science Edition), 2022, 41(3): 97-101. [30]Wu Y W, Wu K, Nie K B, et al. Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites[J]. Materials Science and Engineering A, 2010, 527(29/30): 7873-7877. [31]Belamri C, Belhas S, Riviere A. Damping of a high-purity aluminum single crystal at high temperatures[J]. Materials Science and Engineering A, 2006, 442(1/2): 142-146. [32]Sugimoto K, Niiya K, Okamoto T, et al. A Study of damping capacity in magnesium alloys[J]. Transactions of the Japan Institute of Metals, 1977, 18(3): 277-288. |