[1]董志洪. 我国镀锌板生产现状与未来发展趋势[J]. 中国金属通报, 2009(20): 13-15. [2]宋 加. 我国热镀锌钢板生产及镀锌技术的发展[J]. 轧钢, 2006, 23(3): 42-46. Song Jia. Production and technology development of hot-dipped galvanized sheet steel[J]. Steel Rolling, 2006, 23(3): 42-46. [3]马鸣图. 我国汽车钢板研究与应用进展[J]. 钢铁, 2001, 36(8): 64-69. Ma Mingtu. Progress in research and application of automobile steels in China[J]. Iron and Steel, 2001, 36(8): 64-69. [4]张启富, 刘邦津, 黄建中. 现代钢带连续热镀锌[M]. 北京: 冶金工业出版社, 2007. [5]王力达, 王淑华, 梅淑文. 高强度热镀锌板S550GD+Z的研制与开发[J]. 河北冶金, 2015(12): 11-13. Wang Lida, Wang Shuhua, Mei Shuwen. Development of high-strength hot galvanizing plate S550GD+Z[J]. Hebei Metallurgy, 2015(12): 11-13. [6]王俊峰, 张 红, 何承先. 一种780 MPa级TRIP型冷轧热镀锌双相钢及其制造方法: CN111748746B[P]. 2020-10-09. [7]林承江, 李立军, 陈 宇, 等. 一种800 MPa级轿车用镀锌双相钢及生产方法: CN105441805A[P]. 2016-03-30. [8]谭 文, 潘利波, 王俊霖, 等. 一种抗拉强度800 MPa级热镀锌高强钢及其减量化生产方法: CN108823507B[P]. 2018-11-16. [9]裴少伟, 韩 飞. 镀锌层对高强度镀锌薄板力学性能的影响[J]. 锻压技术, 2013, 38(4): 36-40. Pei Shaowei, Han Fei. Influence of galvanized layer on mechanical properties of thin high strength steel sheet[J]. Forging and Stamping Technology, 2013, 38(4): 36-40. [10]蒋浩民, 陈新平, 吴 华, 等. 锌层对镀锌钢板力学性能指标的影响[J]. 锻压装备与制造技术, 2005(3): 65-67. Jiang Haomin, Chen Xinping, Wu Hua, et al. Effect of zinc coating on the mechanical properties of zinc-coated sheet[J]. China Metalforming Equipment and Manufacturing Technology, 2005(3): 65-67. [11]钱健清. 镀锌层对钢板r值的影响[J]. 钢铁研究学报, 2003, 15(4): 58-60, 65. Qian Jianqing. Effect of galvanized coating on r-value of sheets[J]. Journal of Iron and Steel Research, 2003, 15(4): 58-60, 65. [12]尉文超, 薛彦均, 孙 挺, 等. 退火温度对V-Ti-Mo钢析出相和力学性能的影响[J]. 金属热处理, 2020, 45(3): 20-24. Yu Wenchao, Xue Yanjun, Sun Ting, et al. Effect of annealing temperature on precipitate and mechanical properties of V-Ti-Mo steel[J]. Heat Treatment of Metals, 2020, 45(3): 20-24. [13]李小琳. 低碳微合金钢中纳米碳化物析出控制及表征[D]. 沈阳: 东北大学, 2019. [14]张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016, 52(4): 410-418. Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strength steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410-418. [15]薛春芳, 王新华, 辛义德. 含铌微合金钢强韧化机理[J]. 金属热处理, 2003, 28(5): 15-17, 26. Xue Chunfang, Wang Xinhua, Xin Yide. Strengthening and toughening mechanism of Nb microalloyed steel[J]. Heat Treatment of Metals, 2003, 28(5): 15-17, 26. [16]中信微合金化技术中心. 铌·科学与技术[M]. 北京: 冶金工业出版社, 2003. [17]薛春芳, 胡贻苏. 含铌微合金钢中铌的析出行为对晶粒细化的影响[J]. 冶金丛刊, 2004(4): 1-3. Xue Chunfang, Hu Yisu. Effect of Nb precipitation on the grain fining in Nb-microalloyed steel[J]. Metallurgical Collections, 2004(4): 1-3. [18]徐乃龙, 王 利, 洪继要, 等. Nb-Ti微合金碳氮化物析出行为及微合金钢性能研究[J]. 锻压技术, 2014, 39(5): 121-126. Xu Nailong, Wang Li, Hong Jiyao, et al. Study on performance of carbonitride precipitation and properties in Nb-Ti microalloyed steels[J]. Forging and Stamping Technology, 2014, 39(5): 121-126. [19]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. [20]吴新朗, 赵征志, 田 允, 等. Nb-Ti微合金钢热变形后组织演变及第二相粒子析出行为[J]. 钢铁钒钛, 2008, 29(1): 66-70. Wu Xinlang, Zhao Zhengzhi, Tian Yun, et al. Phase transformation and second-phase precipitation behavior of Nb-Ti microalloyed steel during cooling after deformation[J]. Iron Steel Vanadium Titanium, 2008, 29(1): 66-70. [21]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [22]张 可, 雍岐龙, 孙新军, 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52(5): 529-537. Zhang Ke, Yong Qilong, Sun Xinjun, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metallurgica Sinica, 2016, 52(5): 529-537. [23]张正延, 柴 锋, 罗小兵, 等. 一种利用EBSD测量钢中位错密度的方法: CN108535295B[P]. 2019-10-25. |