[1]唐兴昌, 程刚虎, 张嘉琦, 等. 20Mn23AlV无磁钢组织及热物理性能预测与验证[J]. 金属热处理, 2023, 48(11): 8-15. Tang Xingchang, Cheng Ganghu, Zhang Jiaqi, et al. Prediction and validation of microstructure and thermophysical properties of 20Mn23AlV non-magnetic steel[J]. Heat Treatment of Metals, 2023, 48(11): 8-15. [2]姜一鸣, 屈华鹏, 郎宇平, 等. 高钼无磁钢等温变形过程中的析出及温度场模拟[J]. 金属热处理, 2023, 48(6): 156-161. Jiang Yiming, Qu Huapeng, Lang Yuping, et al. Precipitation and temperature field simulation of high molybdenum non-magnetic steel during isothermal deformation[J]. Heat Treatment of Metals, 2023, 48(6): 156-161. [3]田 一, 巩学海, 王广克, 等. 高锰无磁钢在输变电设备中的应用[J]. 中国锰业, 2016, 34(5): 94-97. Tian Yi, Gong Xuehai, Wang Guangke, et al. Application of high manganese non-magnetic steel in transformation equipment[J]. China Manganese Industry, 2016, 34(5): 94-97. [4]李长生, 马 彪, 宋艳磊, 等. 无磁钢的研究概况和我国无磁钢的发展思路[J]. 河南冶金, 2014, 22(1): 1-7, 12. Li Changsheng, Ma Biao, Song Yanlei, et al. The research progress and development ideas of non-magnetic steels in China[J]. Henan Metallurgy, 2014, 22(1): 1-7, 12. [5]马 彪, 韩文龙, 李 涛, 等. 30Mn27Al4V无磁钢的热变形规律[J]. 塑性工程学报, 2012, 19(2): 66-69. Ma Biao, Han Wenlong, Li Tao, et al. Research on hot deformation behavior of 30Mn27Al4V non-magnetic steel[J]. Journal of Plasticity Engineering, 2012, 19(2): 66-69. [6]董明慧. 奥氏体不锈钢层错能的理论研究[D]. 太原: 太原理工大学, 2011. [7]王凤权, 孙 挺, 王毛球, 等. 不同镍含量奥氏体基低密度热轧钢的组织与力学性能[J]. 金属热处理, 2021, 46(12): 31-39. Wang Fengquan, Sun Ting, Wang Maoqiu, et al. Microstructure and mechanical properties of low density austenitic matrix hot rolling steel with different Ni contents[J]. Heat Treatment of Metals, 2021, 46(12): 31-39. [8]曹晨星, 王存宇, 曹文全. FeMnAlC低密度钢中κ-碳化物形成机理[J]. 金属热处理, 2021, 46(12): 1-6. Cao Chenxing, Wang Cunyu, Cao Wenquan. Formation mechanism of κ-carbide in FeMnAlC low density steel[J]. Heat Treatment of Metals, 2021, 46(12): 1-6. [9]刘少尊, 厉 勇, 王春旭, 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120-124. Liu Shaozun, Li Yong, Wang Chunxu, et al. Effects of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treatment of Metals, 2015, 40(9): 120-124. [10]肖心萍. 增氮对控轧控冷低碳Mo-V-Ti钢微观组织和力学性能的影响[D]. 秦皇岛: 燕山大学, 2020. [11]牛宁涛, 王云开, 李云杰, 等. 超深井V170级高强钢的热变形行为[J]. 金属热处理, 2023, 48(8): 58-63. Niu Ningtao, Wang Yunkai, Li Yunjie, et al. Hot deformation behavior of V170 grade high-strength steel for ultra-deep wells[J]. Heat Treatment of Metals, 2023, 48(8): 58-63. [12]吉 光, 高秀华, 龙金花. 微合金元素Nb对高碳合金钢动态再结晶行为的影响[J]. 金属热处理, 2021, 46(8): 26-30. Ji Guang, Gao Xiuhua, Long Jinhua. Effect of microalloying element niobium on dynamic recrystallization behavior of high carbon alloy steel[J]. Heat Treatment of Metals, 2021, 46(8): 26-30. [13]Boratto F, Barbosa R, Yue S, et al. Effect of chemical composition on the critical temperatures of microalloyed steels[C]//International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals. 1988: 383-390. [14]Cheng G H, Tang X C, Zhang Z J, et al. Effect of uniaxial compression on the microstructural evolution and magnetic properties of 20Mn23AlV non-magnetic structural steel[J]. Materials Today Communications, 2024, 39: 108935. [15]Fu W K, Li Y L, Hu S Y. et al. Effect of loading path on grain misorientation and geometrically necessary dislocation density in polycrystalline aluminum under reciprocating shear[J]. Computational Materials Science, 2022, 205: 111221. [16]Zhu W G, Shu T C, Cui L L, et al. Microstructure analysis of the limited strain hardening in metastable β titanium alloy with equiaxed grain[J]. Journal of Materials Engineering and Performance, 2023, 32(16): 7381-7389. [17]景群社. 新型电磁搅拌用无磁钢[J]. 金属热处理, 2013, 38(5): 64-66. Jing Qunshe. Non magnetic steel for electromagnetic stirring[J]. Heat Treatment of Metals, 2013, 38(5): 64-66. [18]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review[J]. Materials Today, 1998, 1(2): 14-15. [19]Mcqueen H J. Development of dynamic recrystallization theory[J]. Materials Science and Engineering A, 2004, 387: 203-208. [20]Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior[J]. Acta Materialia, 1998, 46: 69-80. [21]王 敏, 周超梅, 姚长贵, 等. 高锰无磁钢50Mn18Cr4V的研究[J]. 热加工工艺, 2008, 37(18): 69-71. Wang Min, Zhou Chaomei, Yao Changgui, et al. Study on 50Mn18Cr4V steel with high manganese and low magnetic[J]. Hot Working Technology, 2008, 37(18): 69-71. [22]Akben M G, Bacroix B, Jonas J J. Effect of vanadium and molybdenum addition on high temperature recovery, recrystallization and precipitation behavior of niobium-based microalloyed steels[J]. Acta Metallurgica, 1983, 31: 161-174. |