[1]]Zuo-Jiang Sizhi, Yu Hongying, Jiang Xuzhou, et al. A thermal field FEM of titanium alloy coating on low-carbon steel by laser cladding with experimental validation[J]. Surface and Coatings Technology, 2023, 452: 129113. [2]王慧鹏, 朱鹏华, 舒凤远, 等. 65Mn钢表面激光熔覆温度场模拟及性能研究[J]. 机械工程学报, 2023, 59(7): 216-224. Wang Huipeng, Zhu Penghua, Shu Fengyuan, et al. Simulation and performance research of laser cladding temperature field on 65Mn steel surface[J]. Journal of Mechanical Engineering, 2023, 59(7): 216-224. [3]]Ullah A Z, Yasir K M, Ehtsham U R, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications[J]. Journal of Manufacturing Processes, 2021, 68: 225-273. [4]]Benoit M J, Sun S D, Brandt M, et al. Processing window for laser metal deposition of Al 7075 powder with minimized defects[J]. Journal of Manufacturing Processes, 2021, 64: 1484-1492. [5]]Song Jie, Chew Youxiang, Bi Guijun, et al. Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis[J]. Materials and Design, 2018, 137: 286-297. [6]]丁 涛, 张云华, 李俊杰, 等. 不锈钢表面激光熔覆技术研究现状与展望[J]. 金属热处理, 2022, 47(2): 205-212. Ding Tao, Zhang Yunhua, Li Junjie, et al. Research status and prospect of laser cladding technology on stainless steel surface[J]. Heat Treatment of Metals, 2022, 47(2): 205-212. [7]]龚玉玲, 武美萍, 崔 宸, 等. 搭接率对TC4表面Ni60A熔覆层组织性能的影响[J]. 金属热处理, 2021, 46(9): 229-233. Gong Yuling, Wu Meiping, Cui Chen, et al. Effect of overlap rate on microstructure and properties of Ni60A clad coating on TC4 titanium alloy[J]. Heat Treatment of Metals, 2021, 46(9): 229-233. [8]]Cheng Yongjie, Wang Yanshuang, Lin Jianghai, et al. Research status of the influence of machining processes and surface modification technology on the surface integrity of bearing steel materials[J]. International Journal of Advanced Manufacturing Technology, 2023, 125(7): 1-27. [9]Zhu Lida, Xue Pengsheng, Lan Qing, et al. Recent research and development status of laser cladding: A review[J]. Optics and Laser Technology, 2021, 138: 106915. [10]Zhang Zhe, Kovacevic R. Laser cladding of iron-based erosion resistant metal matrix composites[J]. Journal of Manufacturing Processes, 2019, 38: 63-75. [11]王冰涛, 熊宗慧, 孙耀宁. 不锈钢表面激光熔覆镍基合金涂层的数值模拟与实验[J]. 金属热处理, 2023, 48(1): 232-237. Wang Bingtao, Xiong Zonghui, Sun Yaoning. Numerical simulation and experiments of laser cladding of nickel-based alloy coating on stainless steel surface[J]. Heat Treatment of Metals, 2023, 48(1): 232-237. [12]]Gao Wenyan, Zhao Shusen, Wang Yibo, et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat and Mass Transfer, 2016, 92: 83-90. [13]]Shen Chen, Li Chonggui, Guo Yajun, et al. Modeling of temperature distribution and clad geometry of the molten pool during laser cladding of TiAlSi alloys[J]. Optics and Laser Technology, 2021, 142: 107277. [14]]Liu Lichao, Wang Gang, Ren Ke, et al. Marangoni flow patterns of molten pools in multi-pass laser cladding with added nano-CeO2[J]. Additive Manufacturing, 2022, 59: 103156. [15]]Ebrahimi Amin, Sattari Mohammad, Bremer J L Scholte, et al. The influence of laser characteristics on internal flow behaviour in laser melting of metallic substrates[J]. Materials and Design, 2022, 214: 110385. [16]]席明哲, 虞 钢. 连续移动三维瞬态激光熔池温度场数值模拟[J]. 中国激光, 2004, 31(12): 1527-1532. Xi Mingzhe, Yu Gang. Numerical simulation for the transient temperature field of 3D moving laser molten pool[J]. Chinese Journal of Lasers, 2004, 31(12): 1527-1532. [17]]Gao Jiali, Wu Chengzu, Hao Yunbo, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics and Laser Technology, 2020, 129: 106287. [18]]Xu Kaikai, Gong Yadong, Zhang Qiang. Numerical simulation of dynamic analysis of molten pool in the process of direct energy deposition[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124: 2451-2461. [19]]Song Boxue, Yu Tianbiao, Jiang Xingyu, et al. Numerical model of transient convection pattern and forming mechanism of molten pool in laser cladding[J]. Numerical Heat Transfer, Part A: Applications, 2019, 75(12): 855-873. [20]]Li Chang, Zhang Dacheng, Gao Xing, et al. Numerical simulation method of the multi-field coupling mechanism for laser cladding 316L powder[J]. Welding in the World, 2022, 66(3): 423-440. [21]]Shi Xinyu, Gu Dongdong, Li Yanze, et al. Thermal behavior and fluid dynamics within molten pool during laser inside additive manufacturing of 316L stainless steel coating on inner surface of steel tube[J]. Optics and Laser Technology, 2021, 138: 106917. [22]]You S, Bathe K J. Transient solution of 3D free surface flows using large time steps[J]. Computers and Structures, 2015, 158: 346-354. [23]]Wirth F, Wegener K. A physical modeling and predictive simulation of the laser cladding process[J]. Additive Manufacturing, 2018, 22: 307-319. [24]]Lee Y S, Farson D F. Surface tension-powered build dimension control in laser additive manufacturing process[J]. International Journal of Advanced Manufacturing Technology, 2016, 85(5-8): 1035-1044. [25]]Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018, 9(1): 1355. [26]]Su Y, Li Z, Mills K C. Equation to estimate the surface tensions of stainless steels[J]. Journal of Materials Science, 2005, 40: 2201-2205. |