[1]李 权, 王福德, 王国庆, 等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3): 74-82, 89. Li Quan, Wang Fude, Wang Guoqing, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2018, 61(3): 74-82, 89. [2]李明祥, 张 涛, 于 飞, 等. 金属电弧熔丝增材制造及其复合制造技术研究进展[J]. 航空制造技术, 2019, 62(17): 14-21. Li Mingxiang, Zhang Tao, Yu Fei, et al. Research progress of wire and arc additive manufacturing and hybrid manufacturing technology for metal components[J]. Aeronautical Manufacturing Technology, 2019, 62(17): 14-21. [3]张骥俊, 邢彦锋, 曹菊勇. 超声振动对CMT电弧增材制造铝合金组织与性能的影响[J]. 金属热处理, 2022, 47(4): 159-164. Zhang Jijun, Xing Yanfeng, Gao Juyong. Effect of ultrasonic vibration on microstructure and properties of aluminum alloy produced by CMT wire arc additive manufacturing[J]. Heat Treatment of Metals, 2022, 47(4): 159-164. [4]王 帅, 顾惠敏, 王 伟, 等. ZL205A电弧熔丝增材制造堆积体的组织与性能[J]. 稀有金属材料与工程, 2019, 48(9): 2910-2916. Wang Shuai, Gu Huimin, Wang Wei, et al. Microstructure and mechanical properties of ZL205A aluminum alloy wall produced by wire arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2910-2916. [5]陈文涛, 尹 靖, 王春艳, 等. 激光增材制造6061铝合金热处理及强韧机理[J]. 金属热处理, 2023, 48(8): 172-179. Chen Wentao, Yin Jing, Wang Chunyan, et al. Heat treatment and strengthening mechanisms of laser additive manufactured 6061 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(8): 172-179. [6]聂文忠, 曾嘉艺, 李晓萱, 等. 电弧熔丝增材制造铝合金零件中气孔的研究现状[J]. 机械工程材料, 2021, 45(11): 97-102. Nie Wenzhong, Zeng Jiayi, Li Xiaoxuan, et al. Research status on pore in aluminum alloy parts by wire and arc additive manufacturing[J]. Materials for Mechanical Engineering, 2021, 45(11): 97-102. [7]郝 轩, 黄永德, 陈 伟, 等. 基于CMT技术的铝合金电弧增材制造研究现状[J]. 精密成形工程, 2018, 10(5): 88-94. Hao Xuan, Huang Yongde, Chen Wei, et al. Research status of the aluminum alloy arc additive manufacturing technology based on the CMT[J]. Journal of Netscape Forming Engineering, 2018, 10(5): 88-94. [8]Gu J L, Wang X, Bai J, et al. Deformation microstructures and strengthening mechanisms for the wire arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling[J]. Materials Science and Engineering A, 2017, 712: 292-301. [9]王磊磊, 吕飞阅, 高转妮, 等. 电弧增材制造2319铝合金交叉桁条结构微观组织与拉伸性能研究[J]. 机械工程学报, 2023, 59(1): 267-277. Wang Leilei, Lü Feiyu, Gao Zhuanni, et al. Microstructure and tensile properties of wire arc additive manufactured 2319 aluminum alloy cross-stringer structure[J]. Journal of Mechanical Engineering, 2023, 59(1): 267-277. [10]从保强, 丁佳洛. CMT工艺对Al-Cu合金电弧增材制造气孔的影响[J]. 稀有金属材料与工程, 2014, 43(12): 3149-3153. Cong Baoqiang, Ding Jialuo. Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 2014, 43(12): 3149-3153. [11]李 攀, 郭 顺, 杨东青, 等. 超声振动辅助电弧增材制造 2219 铝合金的显微组织及力学性能[J]. 中国有色金属学报, 2023, 33(7): 2081-2089. Li Pan, Guo Shun, Yang Dongqing, et al. Microstructure and mechanical properties of 2219 aluminum alloy manufactured by ultrasonic vibration assisted wire and arc additively manufacturing[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(7): 2081-2089. [12]Fang X, Zhang L, Chen G, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering[J]. Materials Science and Engineering A, 2020, 800: 140168. [13]Gu J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Materials Science and Engineering A, 2016, 651: 18-26. [14]王喜琴, 张贵一, 乐 斌, 等. 固溶处理工艺对2219铝合金力学性能的影响[J]. 上海航天, 2019, 36(5): 133-138. Wang Xiqin, Zhang Guiyi, Le Bin, et al. Effects of solution treatment on mechanical properties of 2219 aluminum alloy[J]. Aerospace Shanghai, 2019, 36(5): 133-138. [15]Jia S F, Zhan L H, Zhang J. Influence of solid solution treatment on microstructure and mechanical properties of 2219 aluminum alloy[J]. Materials Research Innovations, 2014, 18(9): 52-58. [16]]Cai Xiaoyu, Dong Bolun, Bai Jiuyang, et al. Effect of post-deposition heat treatment on microstructures of GTA-additive manufactured 2219-Al[J]. Science and Technology of Welding and Joining, 2019, 24(5): 474-483. [17]禹润缜, 赵 峰, 余圣甫, 等. 电弧熔丝增材制造ER2319铝堆积金属的组织性能及T6热处理工艺优化[J]. 金属热处理, 2021, 46(4): 49-59. Yu Runzhen, Zhao Feng, Yu Shengfu, et al. Microstructure, properties and T6 heat treatment process optimization for wire arc additive manufacturing ER2319 aluminum deposited metals[J]. Heat Treatment of Metals, 2021, 46(4): 49-59. [18]马 征. 冷变形及时效对2219铝合金组织性能的影响规律[D]. 哈尔滨: 哈尔滨工业大学, 2014. [19]李 权, 王国庆, 罗志伟, 等. 2219铝合金电弧增材制造组织及力学性能的非均匀性[J]. 稀有金属材料与工程, 2020, 49(11): 3969-3976. Li Quan, Wang Guoqing, Luo Zhiwei, et al. Inhomogeneity of microstructure and mechanical properties of 2219 aluminum alloy by WAAM[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3969-3976. |