[1]向 力, 闵小华, 弭光宝. 体心立方Ti-Mo基钛合金应用研究进展[J]. 材料工程, 2017, 45(7): 128-136. Xiang Li, Min Xiaohua, Mi Guangbao. Application and research process of body-centered-cubic Ti-Mo base alloys[J]. Journal of Materials Engineering, 2017, 45(7): 128-136. [2]Min X H, Tsuzaki K, Emura S, et al. Enhanced uniform elongation by pre-straining with deformation twinning in high-strength β-titanium alloys with an isothermal ω-phase[J]. Philosophical Magazine Letters, 2012, 92(12): 726-732. [3]Karthikeyan T, Dasgupta A, Khatirkar R, et al. Effect of cooling rate on transformation texture and variant selection during β→α transformation in Ti-5Ta-1.8Nb alloy[J]. Materials Science and Engineering A, 2010, 528(2): 549-558. [4]Furuhara T, Maki T. Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation[J]. Materials Science and Engineering A, 2001, 312(1/2): 145-154. [5]Burgers W G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1(7-12): 561-586. [6]Bhattacharyya D, Viswanathan G B, Fraser H L. Crystallographic and morphological relationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy[J]. Acta Materialia, 2007, 55(20): 6765-6778. [7]Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy[J]. Acta Materialia, 2003, 51(16): 4679-4691. [8]Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys[J]. Acta Materialia, 2014, 75: 156-166. [9]Lee E, Banerjee R, Kar S. Selection of a variants during microstructural evolution in α/β titanium alloys[J]. Philosophical Magazine, 2007, 87(24): 3615-3627. [10]Min X H, Emura S, Nishimura T, et al. Effects of α phase precipitation on crevice corrosion and tensile strength in Ti-15Mo alloy[J]. Materials Science and Engineering A, 2010, 527(6): 1480-1488. [11]Tamilselvi S, Nishimura T, Min X H, et al. The effect of microstructure on corrosion of molybdenum-bearing titanium alloys in high chloride and acidic solution at high temperature[J]. Materials Transactions, 2009, 50(11): 2545-2551. [12]Wang S C, Aindow M, Starink M J. Effect of self-accommodation on α/α boundary populations in pure titanium[J]. Acta Materialia, 2003, 51(9): 2485-2503. [13]董瑞峰. 热轧Ti-7333合金的组织特征及α相转变研究[D]. 西安: 西北工业大学, 2019. Dong Ruifeng. Microstructural characterization and phase transformation behavior of a hot-rolled Ti-7333 alloy[D]. Xi'an: Northwestern Polytechnical University, 2019. [14]Balachandran S, Kashiwar A, Choudhury A, et al. On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy[J]. Acta Materialia, 2016, 106: 374-387. [15]Balachandran S, Kumar S, Banerjee D. On recrystallization of the α and β phases in titanium alloys[J]. Acta Materialia, 2017, 131: 423-434. [16]Van Bohemen S M C, Kamp A, Petrov R H, et al. Nucleation and variant selection of secondary α plates in a β Ti alloy[J]. Acta Materialia, 2008, 56: 5907-5914. [17]Furuhara T, Takagi S, Watanabe H, et al. Crystallography of grain boundary α precipitates in a β titanium alloy[J]. Metallurgical and Materials Transactions A, 1996, 27: 1635-1646. [18]Blackburn M J, Feeney J A. Stress-induced transformations in Ti-Mo alloys[J]. Journal of the Japan Institute of Metals, 1971, 99: 132-134. [19]Read W T, Shockley W. Dislocation models of crystal grain boundaries[J]. Physical Review, 1950, 78(3): 275-290. |