[1]Hosseini A R, Anijdan S H M, Mousavi S H, et al. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type[J]. Materials Science and Engineering A, 2019, 746: 384-393. [2]张中武. 高强度低合金钢(HSLA)的研究进展[J]. 中国材料进展, 2016, 35(2): 141-151. Zhang Zhongwu. Research development of high strength low alloy(HSLA) steels[J]. Materials China, 2016, 35(2): 141-151. [3]朱志明, 柴 锋, 梁丰瑞, 等. 低合金钢感应淬火温度场模拟与优化[J]. 钢铁研究学报, 2017, 29(1): 75-80. Zhu Zhiming, Chai Feng, Liang Fengrui, et al. Temperature field simulation and optimization of low alloy-steel involved induction hardening[J]. Journal of Iron and Steel Research, 2017, 29(1): 75-80. [4]陈 晨, 罗小兵, 梁丰瑞, 等. 淬火加热方法对含铜高强度球扁钢组织和性能的影响[J]. 热处理, 2021, 36(3): 31-36, 54. Chen Chen, Luo Xiaobing, Liang Fengrui, et al. Effect of methods of heating for hardening on microstructure and properties of cooper-bearing high-strength flat bulb steel[J]. Heat Treatment, 2021, 36(3): 31-36, 54. [5]陈密达, 张云祥, 梁丰瑞, 等. 碳和氮含量对大规格球扁钢组织和性能的影响[J]. 钢铁, 2023, 58(4): 126-137. Chen Mida, Zhang Yunxiang, Liang Fengrui, et al. Effect of C and N contents on mechanical properties of tempered large size bulb flat steel[J]. Iron and Steel, 2023, 58(4): 126-137. [6]申 喆, 薛素玲, 朱建平. 热处理对建筑用X90管线钢组织及力学性能的影响[J]. 铸造技术, 2015, 36(5): 1177-1179. Shen Zhe, Xue Suling, Zhu Jianping. Influence of heat treatment on microstructures and mechanical propertiesof X90 grade pipeline steel used for architectural applications[J]. Foundry Technology, 2015, 36(5): 1177-1179. [7]周松波. 低温转变无碳化物贝氏体生长特征及塑性变形机理研究[D]. 武汉: 武汉科技大学, 2023. [8]杜瑜宾, 胡小锋, 张守清, 等. 含1.4%Cu的HSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354. Du Yubin, Hu Xiaofeng, Zhang Shouqing, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu[J]. Acta Metallurgica Sinica, 2020, 56(10): 1343-1354. [9]Xiong Z, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels[J]. Progress in Materials Science, 2021, 118: 100764. [10]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [11]Gutiérrez I, Altuna M A. Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension[J]. Acta Materialia, 2008, 56(17): 4682-4690. [12]张中武, 魏兴豪, 赵 刚. 低合金高强钢的强韧化机理与焊接性能[J]. 鞍钢技术, 2018(4): 1-8. Zhang Zhongwu, Wei Xinghao, Zhao Gang. Strengthening and toughening mechanism for high strength low alloy steel and its weldability[J]. Angang Technology, 2018(4): 1-8. [13]刘庆冬. HSLA铁素体钢中Cu析出强化和奥氏体韧化的原子探针层析技术研究[D]. 上海: 上海大学, 2012. [14]李振团, 柴 锋, 罗小兵, 等. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137. Li Zhentuan, Chai Feng, Luo Xiaobing, et al. Effect of aging temperature on mechanical properties of ultra high strength marine engineering steel strengthened by Cu precipitation[J]. Materials Reports, 2020, 34(6): 6132-6137. [15]Holzer I, Kozeschnik E. Computer simulation of the yield strength evolution in Cu-precipitation strengthened ferritic steel[J]. Materials Science and Engineering A, 2010, 527(15): 3546-3551. [16]Povoden-Karadeniz E, Kozeschnik E. Simulation of precipitation kinetics and precipitation strengthening of B2-precipitates in martensitic PH13-8Mo steel[J]. ISIJ International, 2012, 52(4): 610-615. |