[1]邢璐璐. 弹性车轮车辆动力学研究[D]. 成都: 西南交通大学, 2012. Xing Lulu. Study on resilient wheel vehicle dynamics[D]. Chengdu: Southwest Jiaotong University, 2012. [2]王 野. 轨道列车车轮的结构分析及其轧制技术的研究[D]. 长春: 吉林大学, 2008. Wang Ye. The research of structure and rolling technology of the railway wheel[D]. Changchun: Jilin University, 2008. [3]李 进, 陈增武, 刘定坤. 42CrMo钢高强度叶片轴的热处理[J]. 大型铸锻件, 2000(4): 25-27. Li Jin, Chen Zengwu, Liu Dingkun. Heat treatment for high strength blade shaft of 42CrMo steel[J]. Heavy Casting and Forgings, 2000(4): 25-27. [4]文 超, 董 雯, 梁会雷, 等. 42CrMo钢的等温淬火和回火[J]. 金属热处理, 2014, 39(12): 50-54. Wen Chao, Dong Wen, Liang Huilei, et al. Isothermal quenching and tempering of 42CrMo steel[J]. Heat Treatment of Metals, 2014, 39(12): 50-54. [5]张 文, 朱百智, 黄振建, 等. 淬火介质对42CrMo钢棒淬火组织及硬度影响的数值模拟及试验验证[J]. 金属热处理, 2020, 45(1): 56-60. Zhang Wen, Zhu Baizhi, Huang Zhenjian, et al. Numerical simulation and experimental verification of effect of quenching medium on quenching microstructure and hardness of 42CrMo steel rod[J]. Heat Treatment of Metals, 2020, 45(1): 56-60. [6]刘 杰, 李萌蘖, 李绍宏, 等. 42CrMo钢船用曲拐加热和淬火过程数值模拟[J]. 金属热处理, 2019, 44(11): 188-195. Liu Jie, Li Mengnie, Li Shaohong, et al. Numerical simulation of heating and quenching process of 42CrMo steel crankshaft[J]. Heat Treatment of Metals, 2019, 44(11): 188-195. [7]蔡笑樱. 42CrMo4大型锻件显微组织对低温冲击性能的影响[D]. 济南: 山东大学, 2018. Cai Xiaoying. Effect of microstructure of 42CrMo4 heavy forgings on low temperature impact properties[D]. Jinan: Shandong University, 2018. [8]石青松, 徐红玉, 王晓强, 等. 42CrMo钢超声滚挤压力学性能研究及参数优化[J]. 锻压技术, 2024, 49(3): 75-85. Shi Qingsong, Xu Hongyu, Wang Xiaoqiang, et al. Study on mechanical properties and parameter optimization for 42CrMo steel ultrasonic rolling extrusion[J]. Forging Stamping Technology, 2024, 49(3): 75-85. [9]秦 怡, 汪 西, 周 杰, 等. 42CrMo汽车转向节热处理裂纹形成机理[J]. 塑性工程学报, 2024, 31(8): 216-224. Qin Yi, Wang Xi, Zhou Jie, et al. Formation mechanism of heat treatment crack in 42CrMo automobile steering knuckle[J]. Journal of Plasticity Engineering, 2024, 31(8): 216-224. [10]邢嘉倪, 蔡 欣, 郑雷刚, 等. 淬火及回火温度对新型中碳合金钢42CrMo4M组织性能的影响[J]. 材料热处理学报, 2022, 43(5): 124-133. Xing Jiani, Cai Xin, Zheng Leigang, et al. Effect of quenching and tempering temperature on microstructure and mechanical properties of a new medium carbon alloy steel 42CrMo4M[J]. Transactions of Materials and Heat Treatment, 2022, 43(5): 124-133. [11]Feltham P. Grain growth in metals[J]. Acta Metallurgica, 1957, 5(2): 97-105. [12]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000. Yu Yongning. Principles of Metallurgy[M]. Beijing: Metallurgical Industry Press, 2000. [13]周 敏. 高强高韧渗碳钢C61的热变形行为及强韧化机理研究[D]. 昆明: 昆明理工大学, 2016. Zhou Min. Study on the hot deformation behavior and strengthening and toughening mechanism of high-strength and high-toughness carburized steel C61[D]. Kunming: Kunming University of Science and Technology, 2016. [14]Hutchinson B, Hagstrom J, Karlsson O, et al. Microstructure and hardness of as-quenched martensites (0.1-0.5%C)[J]. Acta Materialia, 2011, 59(14): 5845-5850. [15]Krauss G. Martensite in steel: Strength and structure[J]. Materials Science and Engineering A, 1999, 273-275: 40-57. |