[1]张东玖, 程从前, 杨 华, 等. 氧化膜完整性对不锈钢海洋大气腐蚀的影响及其质检方法[J]. 腐蚀与防护, 2023, 44(5): 46-50, 56. Zhang Dongjiu, Cheng Congqian, Yang Hua, et al. Effect of passivation film integrity on marine atmospheric corrosion of stainless steel and its quality inspection methods[J]. Corrosion and Protection, 2023, 44(5): 46-50, 56. [2]隋松言, 田 宇, 曲 帅, 等. 304L奥氏体不锈钢中厚板的晶粒度控制[J]. 金属热处理, 2023, 48(12): 184-188. Sui Songyan, Tian Yu, Qu Shuai, et al. Grain size control of medium-thickness 304L stainless steel plates[J]. Heat Treatment of Metals, 2023, 48(12): 184-188. [3]Sun Z Y, Ren S, Hu T M, et al. Effect of ultrasonic surface rolling process on the hot compression behavior of Inconel 718 superalloy at 700 ℃[J]. Nanomaterials, 2019, 9(4): 9040658. [4]Li C Y, Zhu R T, Zhang X X, et al. Impact of surface ultrasonic rolling on cavitation erosion behavior of 304 stainless steel[J]. Surface and Coatings Technology, 2020, 383: 125280. [5]Xia T T, Zeng L F, Zhang X H, et al. Enhanced corrosion resistance of a Cu-10Ni alloy in a 3.5wt%NaCl solution by means of ultrasonic surface rolling treatment[J]. Surface and Coatings Technology, 2019, 363: 390-399. [6]叶仁虎, 李 刚. 超声滚压对热处理Ti-6Al-4V表面摩擦性能的影响[J/OL]. 热加工工艺, 2024(3): 1-6. Ye Renhu, Li Gang. Effect of ultrasonic rolling on surface friction properties of heat-treated Ti-6Al-4V[J/OL]. Hot Working Technology, 2024(3): 1-6. [7]王世杰, 邓建新, 孟 莹, 等. 超声滚压加工表面微织构的研究[J]. 制造技术与机床, 2022(2): 73-79. Wang Shijie, Deng Jianxin, Meng Ying, et al. Study on surface micro texture processing by ultrasonic rolling[J]. Manufacturing Technology and Machine Tool, 2022(2): 73-79. [8]焦传继. 表面滚压强化304不锈钢组织与性能的研究[D]. 沈阳: 沈阳工业大学, 2023. [9]Liu C, Liu D, Zhang X, et al. On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy[J]. Surface and Coatings Technology, 2019, 370: 24-34. [10]Meng Y, Deng J, Lu Y, et al. Fabrication of AlTiN coatings deposited on the ultrasonic rolling textured substrates for improving coatings adhesion strength[J]. Applied Surface Science, 2021, 550: 149394. [11]王世杰. 表面微织构的超声滚压制备技术研究[D]. 济南: 山东大学, 2023. [12]马晓晖, 毛 晶, 龙丽霞, 等. XRD测试材料表面微区残余应力[J]. 实验室科学, 2022, 25(2): 10-13, 18. Ma Xiaohui, Mao Jing, Long Lixia, et al. Measurement of residual stress in the micro-zone of the specimen by X ray diffractometer[J]. Laboratory Science, 2022, 25(2): 10-13, 18. [13]Salahi S, Kazemipour M, Nasiri A. Effects of microstructural evolution on the corrosion properties of AISI 420 martensitic stainless steel during cold rolling process[J]. Materials Chemistry and Physics, 2021, 258: 123916. [14]金一豪, 胡 勇, 游小凡, 等. 再结晶对FeCoCrNiMn高熵合金组织及耐蚀性的影响[J/OL]. 热加工工艺, 2024(1): 1-4. Jin Yihao, Hu Yong, You Xiaofan, et al. Effect of recrystallization on microstructures and corrosion resistance of FeCoCrNiMn high entropy alloy[J/OL]. Hot Working Technology, 2024(1): 1-4. [15]Anwar S, Khan F, Zhang Y, et al. Optimization of zinc‐nickel film electrodeposition for better corrosion resistant characteristics[J]. The Canadian Journal of Chemical Engineering, 2019, 97(9): 2426-2439. [16]Qin P, Chen L Y, Liu Y J, et al. Corrosion and passivation behavior of laser powder bed fusion produced Ti-6Al-4V in static/dynamic NaCl solutions with different concentrations[J]. Corrosion Science, 2021, 191: 109728. [17]Takakuwa O, Soyama H. Effect of residual stress on the corrosion behavior of austenitic stainless steel[J]. Advances in Chemical Engineering and Science, 2015, 5(1): 62-71. [18]Liu X, Frankel G S. Effects of compressive stress on localized corrosion in AA2024-T3[J]. Corrosion Science, 2006, 48(10): 3309-3329. |