[1]Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362. [2]Luo F, Jiang X, Zhang Y, et al. Effect of deep cryogenic treatment on microstructure and mechanical properties of a CoCrFeNiMo medium-entropy alloy[J]. Materials Testing, 2022, 64(4): 463-472. [3]Wang X, Huang B, Tang J, et al. Microstructure and properties of argon arc cladded CoCrxFeMoNiAl high entropy alloy coatings on Q235 steel[J]. Materials Testing, 2023, 65(10): 1465-1473. [4]Liu G, Fu H. Microstructure and properties of laser cladding in-situ ceramic particles reinforced Ni-based coatings[J]. Materials Testing, 2023, 65(6): 855-866. [5]Zhang M, Zhou X, Yu X, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surface and Coatings Technology, 2017, 311: 321-329. [6]王书亮, 毛一点, 李奇霖, 等. V对富Fe非等原子比FeCrCoNi高熵合金组织及性能的影响[J]. 金属热处理, 2024, 49(5): 22-28. Wang Shuliang, Mao Yidian, Li Qilin, et al. Effect of V on microstructure and properties of Fe-rich non-equiatomic FeCrCoNi high-entropy alloy[J]. Heat Treatment of Metals, 2024, 49(5): 22-28. [7]Liang G, Jin G, Cui X, et al. Designing AlCoCrFeNiTi high-entropy alloy with the directional array TiN by magnetic field-assisted laser cladding[J]. Applied Physics A, 2021, 127: 1-10. [8]McPherson R. A review of microstructure and properties of plasma sprayed ceramic coatings[J]. Surface and Coatings Technology, 1989, 39: 173-181. [9]李荣斌, 宗在康, 张志玺, 等. 硅对铸态CoCrFeMnNi高熵合金组织及性能的影响[J]. 金属热处理, 2024, 49(2): 45-52. Li Rongbin, Zong Zaikang, Zhang Zhixi, et al. Effect of Si addition on microstructure and properties of as-cast CoCrFeMnNi high entropy alloy[J]. Heat Treatment of Metals, 2024, 49(2): 45-52. [10]Yuan J, Yao G, Pan S, et al. Size control of in situ synthesized TiB2 particles in molten aluminum[J]. Metallurgical and Materials Transactions A, 2021, 52: 2657-2666. [11]Xu J Q, Chen L Y, Choi H, et al. Theoretical study and pathways for nanoparticle capture during solidification of metal melt[J]. Journal of Physics: Condensed Matter, 2012, 24(25): 255304. [12]于克东. 原位TiC与Mo协同增强AlCoCrFeNi高熵合金激光熔覆层组织与性能研究[D]. 济南:齐鲁工业大学, 2023. [13]聂秋欣. Al-Cr-Fe-Ni-Mo系多相高熵合金组织及力学性能研究[D]. 大连:大连理工大学, 2021. [14]朱永刚, 周 娟, 唐 燊, 等. 激光熔覆FeCoCrNiMo0.5高熵合金熔覆层的组织结构和耐磨损性能研究[J]. 工程技术研究, 2023, 8(19): 1-3. Zhu Yonggang, Zhou Juan, Tang Shen, et al. Research on the microstructure and wear resistance of FeCoCrNiMo0.5 high-entropy alloy cladding layer by laser cladding[J]. Engineering and Technological Research, 2023, 8(19): 1-3. [15]邢秋玮, 王万年, 李国举, 等. 耐磨高熵合金制备工艺研究进展[J]. 精密成形工程, 2022, 14(12): 85-95. Xing Qiuwei, Wang Wannian, Li Guoju, et al. The manufacture processing and recent progress of wear resistant high-entropy alloys[J]. Journal of Netshape Forming Engineering, 2022, 14(12): 85-95. |