[1]Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys, 2020, 8(1): 1-41. [2]Liu Z, Nie J F, Zhao Y H. Effect of deformation processing on microstructure evolution and mechanical properties of Mg-Li alloys: A review[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(1): 1-25. [3]Wu R Z, Yan Y, Wang G. Recent progress in magnesium-lithium alloys[J]. International Materials Reviews, 2015, 60: 2, 65-100. [4]Peng X, Liu W C, Wu G H. Plastic deformation and heat treatment of Mg-Li alloys: A review[J]. Journal of Materials Science and Technology, 2021(1): 193-206. [5]王树梁, 王春光, 李爱菊, 等. 固溶工艺对Mg-7.5Gd-3Y-0.5Zr合金微观组织及动态冲击行为的影响[J]. 金属热处理, 2024, 49(4): 186-194. Wang Shuliang, Wang Chunguang, Li Aiju, et al. Effect of solution treatment on microstructure and dynamic impact behavior of Mg-7.5Gd-3Y-0.5Zr alloy[J]. Heat Treatment of Metals, 2024, 49(4): 186-194. [6]姜 滨. 镁锂合金力学性能及LPSO 构筑[D]. 哈尔滨: 哈尔滨工程大学, 2012. Jiang Bin. Magnesium-lithium alloy mechanical properties and LPSO construction[D]. Harbin: Harbin Engineering University, 2012. [7]Liu W, Zhang J S, Wei Y J, et al. Extensive dynamic recrystallized grains at kink boundary of 14H LPSO phase in extruded Mg92Gd3Zn1Li4 alloy[J]. Materials Science and Engineering A, 2016, 681(10): 97-102. [8]张文玉, 吴远志, 叶 拓, 等. Mg-1Gd(Nd)-0.6Zr镁合金的显微组织和力学性能[J]. 金属热处理, 2023, 48(10): 215-220. Zhang Wenyu, Wu Yuanzhi, Ye Tuo, et al. Microstructure and mechanical properties of Mg-1Gd(Nd)-0.6Zr magnesium alloy[J]. Heat Treatment of Metals, 2023, 48(10): 215-220. [9]Zhang J H, Zhang L, Leng Z, et al. Experimental study on strengthening of Mg-Li alloy by introducing long-period stacking ordered structure[J]. Scripta Materialia, 2013, 68(9): 675-678. [10]Ravikanth R C, Srinivasarao B. Development of high-strength Mg-0.5Ni-2Gd-xLi (x=0,1,5,10,15,25 at. %) alloys with long-period stacking ordered structure through hot extrusion[J]. Journal of Materials Engineering and Performance, 2022, 32: 5583-5592. [11]Ding N, Du W B, Li X D, et al. Deformation mode and strengthening mechanism of Mg-Gd-Er-Zn-Zr alloy with different LPSO morphology[J]. Journal of Alloys and Compounds, 2024, 992: 174524. [12]Ding S J, Xu L D, Cai X C, et al. Exceptional thermal stability of ultrafine-grained long-period stacking ordered Mg alloy[J]. Rare Metals, 2022, 41(5): 1537-1542. [13]赵超越. 合金元素对镁合金加工硬化行为影响的基础研究[D]. 重庆: 重庆大学, 2020. Zhao Chaoyue. Basic research on the effect of alloying elements on the work hardening behavior of magnesium alloys[D]. Chongqing: Chongqing University, 2020. [14]Li Y N, Deng K K, Wang C J, et al. Effect of final rolling deformation on microstructure, work hardening and softening behavior of Mg-8Li-3Al-0.3Si alloys[J]. Journal of Alloys and Compounds, 2024, 990: 174427. [15]娄号南, 刘家奥, 梅飞强, 等. GH2150合金的热变形行为及动态再结晶规律[J]. 金属热处理, 2023, 48(6): 167-172. Lou Haonan, Liu Jiaao, Mei Feiqiang, et al. Hot deformation behavior and dynamic recrystallization of GH2150 alloy[J]. Heat Treatment of Metals, 2023, 48(6): 167-172. [16]Kim K, Park H W, Ding S, et al. Flow stress of duplex stainless steel by inverse analysis with dynamic recovery and recrystallization model[J]. ISIJ International, 2021, 61(1): 280-291. [17]Xi T, Yin L, Yang C G, et al. Hot deformation behavior and processing map of a Cu-bearing 2205 duplex stainless steel[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 103-114. [18]Yu X, Li Y, Bai Y, et al. Temperature dependence of mechanical strength in HPDC Mg-6Y-3Zn-1Al alloy with LPSO phase[J]. Materials Science and Engineering A, 2024, 892: 146106. [19]Xi S P, Gao X L, Liu W, et al. Hot deformation behavior and processing map of low-alloy offshore steel[J]. Journal of Iron and Steel Research International, 2022, 29(3): 474-483. [20]Ghosh A, Elasheri A, Parson N, et al. Hot deformation behavior and processing maps for an Al-Mg-Si-Zr-Mn alloy[J]. Journal of Alloys and Metallurgical Systems, 2024, 6: 100077. [21]Guo F, Jiang L Y, Ma Y L, et al. Strengthening a dual-phase Mg-Li alloy by strain-induced phase transformation at room temperature[J]. Scripta Materialia, 2020, 179: 16-19. [22]Tian Z, Yang Q, Guan K, et al. Microstructural evolution and aging behavior of Mg-4.5Y-2.5Nd-1.0Gd-0.5Zr alloys with different Zn additions[J]. Rare Metals, 2021, 40(8): 2188-2196. [23]Han Y, Liu G, Zou D, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression[J]. Materials Science and Engineering A, 2013, 565: 342-350. [24]孙 越, 孙 勇, 杨 勇, 等. TC21 钛合金热压缩本构方程及热加工图[J]. 锻压技术, 2023, 48(4): 242-248. Sun Yue, Sun Yong, Yang Yong, et al. Constitutive equation and processing map of TC21 titanium alloy during hot compression[J]. Forging and Stamping Technology, 2023, 48(4): 242-248. [25]曲凤盛, 周 杰, 刘旭光, 等. TC18 钛合金热压缩本构方程及热加工图[J]. 稀有金属材料与工程, 2014, 43(1):120-124. Qu Fengsheng, Zhou Jie, Liu Xuguang, et al. Hot compression constitutive equation and hot processing map of TC18 titanium alloy[J]. Rare Metal Materials and Engineering, 2014, 43(1): 120-124. [26]Xia L L, Xu Y, El-Aty A A, et al. Deformation characteristics in hydro-mechanical forming process of thin-walled hollow component with large deformation: Experimentation and finite element modeling[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104: 4705-4714. [27]王忠堂, 张士宏, 齐广霞, 等. AZ31 镁合金热变形本构方程[J]. 中国有色金属学报, 2008, 18(11):1977-1982. Wang Zhongtang, Zhang Shihong, Qi Guangxia, et al. Constitutive equation for hot deformation of AZ31 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(11): 1977-1982. [28]郭春成, 亓海全, 迟宏宵, 等. 1900 MPa级耐热轴承钢的热变形行为与热加工图[J]. 金属热处理, 2024, 49(4): 26-34. Guo Chuncheng, Qi Haiquan, Chi Hongxiao, et al. Hot deformation behavior and hot processing map of 1900 MPa grade heat-resistant bearing steel[J]. Heat Treatment of Metals, 2024, 49(4): 26-34. [29]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1982. [30]安 震, 王兆麟, 薛 帆, 等. 基于动态材料模型的Ti555211合金热加工图研究[J]. 稀有金属, 2019, 43(7): 706-712. An Zhen, Wang Zhaolin, Xue Fan, et al. Research on hot processing map of Ti555211 alloy based on dynamic material model[J]. Chinese Journal of Rare Metals, 2019, 43(7): 706-712. [31]周 琳, 刘运玺, 陈 玮, 等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属, 2022, 46(1): 27-35. Zhou Lin, Liu Yunxi, Chen Wei, et al. Hot deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals, 2022, 46(1): 27-35. [32]李鸿江, 于 洋, 宋晓云, 等. 新型Ti-6554钛合金热变形行为及热加工图[J]. 稀有金属, 2020, 44(5): 462-468. Li Hongjiang, Yu Yang, Song Xiaoyun, et al. Hot deformation behavior and hot processing map of new Ti-6554 titanium alloy[J]. Chinese Journal of Rare Metals, 2020, 44(5): 462-468. [33]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258. [34]胡剑凌, 朱华明, 严红革, 等. Mg-6Gd-1.2Y-0.53Zr合金的热变形行为及热加工图[J]. 金属热处理, 2023, 48(1): 115-121. Hu Jianling, Zhu Huaming, Yan Hongge, et al. Hot deformation behavior and processing map of Mg-6Gd-1.2Y-0.53Zr alloy[J]. Heat Treatment of Metals, 2023, 48(1): 115-121. |