[1] IEA. Monthly Electricity Statistics[EB/OL]. [2024-10-16]. https://www.iea.org/data-and-statistics/data-tools/monthly-electricity-statistics. [2] Fukuda M. Advanced USC Technology Development in Japan[M] //Gianfrancesco A D. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Elsevier, 2017: 733-754. [3] Jablonski P D, Hawk J A, Cowen C J, et al. Processing of advanced cast alloys for A-USC steam turbine applications[J]. JOM, 2012, 64(2): 271-279. [4] Huang Y, Zhang R, Zhou Z, et al. Effect of long-term aging on microstructural stability and tensile deformation of a Fe-Ni-based superalloy[J]. Materials Science and Engineering A, 2022, 847: 143298. [5] Jiang H, Liu C, Dong J, et al. The effect of Mo and Ti elements on long-term microstructure stability of 617B nickel-base superalloy[J]. Journal of Alloys and Compounds, 2020, 821: 153217. [6] Wei L L, Gao G H, Kim J, et al. Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement[J]. Materials Science and Engineering A, 2022, 838: 142829. [7] Guan S, Cui C Y. A Newly developed wrought Ni-Fe-Cr-based superalloy for advanced ultra-supercritical power plant applications beyond 700 ℃[J]. Acta Metallurgica Sinica(English Letters), 2015(9): 1083-1088. [8] 倪 莉, 张 军, 王 博, 等. 镍基高温合金设计的研究进展[J]. 材料导报, 2014, 28(3): 1-6, 16. Ni Li, Zhang Jun, Wang Bo, et al. Progress in alloy design of nickel-based superalloys[J]. Materials Reports, 2014, 28(3): 1-6, 16. [9] 敬仕煜, 何小明, 张 玮, 等. 650 ℃先进超超临界锅炉高温部件选材探讨[J]. 发电设备, 2023, 37(5): 310-316. Jing Shiyu, He Xiaoming, Zhang Wei, et al. Discussionon material selection of high-temperature components for 650 ℃ advanced ultra-supercritical boiler[J]. Power Equipment, 2023, 37(5): 310-316. [10] Pan B K, Wei L L, Jiao C H, et al. Interplay between high-temperature creep deformation behavior and nanoscale precipitate evolution in a newly designed Fe-Ni-based superalloy[J]. Materials Science and Engineering A, 2024, 896: 146234. [11] Liu H, Zhao X, Yuan Y, et al. Influence of thermal exposure on microstructural stability and tensile properties of a new Ni-base superalloy[J]. Journal of Materials Research and Technology, 2022, 21: 4462-4472. [12] Peng Z, Zou J, Wang X. Microstructural characterization of dislocation movement during creep in powder metallurgy FGH96 superalloy[J]. Materials Today Communications, 2020, 25: 101361. [13] Hou K, Wang M, Zhao P, et al. Temperature-dependent yield strength and deformation mechanism of a casting Ni-based superalloy containing low volume-fraction γ′ phase[J]. Journal of Alloys and Compounds, 2022, 905: 164187. [14] Shang Z, Wei X, Song D, et al. Microstructure and mechanical properties of a new nickel-based single crystal superalloy[J]. Journal of Materials Research and Technology, 2020, 9(5): 11641-11649. [15] Yuan X F, Song J X, Zheng Y R, et al. Quantitative microstructural evolution and corresponding stress rupture property of K465 superalloy[J]. Materials Science and Engineering A, 2016, 651: 734-44. [16] Sun W, Qin X, Guo J, et al. Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni-Fe-Cr based superalloy during long-term thermal exposure[J]. Materials and Design, 2015, 69: 70-80. [17] Yuan Y, Zhong Z H, Yu Z S, et al. Microstructural evolution and compressive deformation of a new Ni-Fe base superalloy after long term thermal exposure at 700 ℃[J]. Materials Science and Engineering A, 2014, 619: 364-369. [18] Bechetti D H, Dupont J N, De Barbadillo J J, et al. Microstructural evolution of INCONEL© alloy 740H© fusion welds during creep[J]. Metallurgical and Materials Transactions A, 2015, 46(2): 739-755. [19] Ogura T, Hirose A, Sato T. Effect of PFZ and grain boundary precipitate on mechanical properties and fracture morphologies in Al-Zn-Mg(Ag) alloys[J]. Materials Science Forum, 2010, 638-642: 297-302. [20] Santella M L, Tortorelli P F, Render M, et al. Predicting the creep-rupture lifetime of a cast austenitic stainless steel using Larson-Miller and Wilshire parametric approaches[J]. International Journal of Pressure Vessels and Piping, 2023, 205: 105006. [21] Maruyama K, Abe F, Sato H, et al. On the physical basis of a Larson-Miller constant of 20[J]. International Journal of Pressure Vessels and Piping, 2018, 159: 93-100. [22] Baldan A. Review Progress in Ostwald ripening theories and their applications to the γ′-precipitates in nickel-base superalloys Part II Nickel-base superalloys[J]. Journal of Materials Science, 2002, 37(12): 2379-2405. [23] Unocic K A, Shingledecker J P, Tortorelli P F. Microstructural changes in Inconel© 740 after long-term aging in the presence and absence of stress[J]. JOM, 2014, 66(12): 2535-2542. [24] Ardell A J, Nicholson R B . On the modulated structure of aged Ni-Al alloys with an appendix on the elastic interaction between inclusions by J. D. Eshelby Cavendish Laboratory, University of Cambridge, England[J]. Acta Metallurgica, 1966, 14(10): 1295-1309. [25] Van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ′ alloys[J]. Acta Materialia, 2012, 60(4): 1771-1783. [26] Nedjad S H, Ahmadabadi M N, Furuhara T. Correlation between the intergranular brittleness and precipitation reactions during isothermal aging of an Fe-Ni-Mn maraging steel[J]. Materials Science and Engineering A, 2008, 490(1/2): 105-112. |