[1] Zhu Y T, Wu X L. Heterostructured materials[J]. Progress in Materials Science, 2023, 131: 101019. [2] Zhu Y T, Ameyam K, Anserson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction[J]. Materials Research Letters, 2021, 9(1): 1-31. [3] Sankaran S, Sarma V S, Padmanabhan K A, et al. High cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: A comparison between ferrite-pearlite and tempered martensite microstructures[J]. Materials Science and Engineering A, 2003, 362(1/2): 249-256. [4] Gladshtein L I, Larionova N P, Belyaev B F. Effect of ferrite-pearlite microstructure on structural steel properties[J]. Metallurgist, 2012, 56(7/8): 579-590. [5] 王浩云, 曹建春, 阴树标, 等. 铌对高碳钢共析转变和退火组织的影响[J]. 昆明理工大学学报(自然科学版), 2023, 48(2): 21-30, 40. Wang Haoyun, Cao Jianchun, Yin Shubiao, et al. Effects of niobium on eutectoid transformation and annealing microstructure of high carbon steel[J]. Journal of Kunming University of Science and Technology(Natural Science), 2023, 48(2): 21-30, 40. [6] Yong Q L, Zhang Z Y, Sun X J,et al. Effect of dissolved niobium on eutectoid transformation behavior[J]. Journal of Iron and Steel Research International, 2017, 24(9): 973-978. [7] 张正延, 雍岐龙, 孙新军, 等. 共析钢中铌对珠光体相变行为的影响[J]. 钢铁, 2012, 47(4): 79-83. Zhang Zhengyan, Yong Qilong, Sun Xinjun, et al. Effect of Nb on pearlite transformation behavior of eutectoid steel[J]. Iron and Steel, 2012, 47(4): 79-83. [8] Zhang C L, Liu Y Z, Zhou L Y, et al. Forming condition and control strategy of ferrite decarburization in 60Si2MnA spring steel wires for automotive suspensions[J]. Journal of Iron and Steel Research International, 2012, 19: 116-121. [9] 张朝磊, 韩 强, 孙 帅, 等. Nb-V复合微合金化对60Si2MnA弹簧钢耐腐蚀性能的影响[J]. 金属热处理, 2010, 35(11): 42-44. Zhang Chaolei, Han Qiang, Sun Shuai, et al. Effects of Nb-V microalloying on corrosion resistance of 60Si2MnA spring steel[J]. Heat Treatment of Metals, 2010, 35(11): 42-44. [10] 苏 雪, 王厚昕, 朱 敏, 等. 原位观察铌对高碳钢珠光体相变的影响[J]. 钢铁, 2022, 57(4): 88-96. Su Xue, Wang Houxin, Zhu Min, et al. In-situ observation for effect of niobium on pearlite transformation in high-carbon steels[J]. Iron and Steel, 2022, 57(4): 88-96. [11] Liu X, Cao J C, Chen W, et al. Post-rolling cooling phase transformation and microstructure of high-strength anti-seismic rebars with different solute Nb and austenite microstructure[J]. Metals, 2022, 12(10): 1734. [12] Dey I, Chandra S, Saha R, et al. Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel[J]. Materials Characterization, 2018, 140: 45-54. [13] Tian J, Wang H, Zhu M, et al. Improving mechanical properties in high-carbon pearlitic steels by replacing partial V with Nb[J]. Materials Science and Engineering A, 2022, 834: 142622. [14] 张朝磊, 邵珠浩, 李 戬, 等. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106. Zhang Chaolei, Shao Zhuhao, Li Jian, et al. Application and development of niobium microalloying technology in medium and high carbon steel[J]. Materials Reports, 2021, 35(5): 5102-5106. [15] Varshney A, Verma D, Sangal S, et al. High strength high carbon low alloy pearlite-ferrite-tempered martensite steels[J]. Transactions of the Indian Institute of Metals, 2015, 68(1): 117-128. [16] 卢 超, 曹建春, 陈 伟, 等. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 146-153. Lu Chao, Cao Jianchun, Chen Wei, et al. Effect of reheating temperature on continuous cooling transformation, microstructure and properties of Nb microalloyed rebar[J]. Materials Reports, 2023, 37(8): 146-153. [17] Hulka K, Kern A, Schriever U. Application of niobium in quenched and tempered high-strength steels[J]. Materials Science Forum, 2005, 500-501: 519-526. [18] Olsen G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations[J]. Journal of Less Common Metals, 1972, 28(1): 107-118. [19] 周自强. 钢中马氏体的形态转化[J]. 机械, 1981(9): 30-38. [20] 李 翔, 康永林, 顾克进, 等. 铌微合金化高碳钢的连续冷却转变[J]. 钢铁研究学报, 2004, 16(3): 44-48. Li Xiang, Kang Yonglin, Gu Kejin, et al. Continuous cooling transformation of niobium microalloyed high carbon steels[J]. Journal of Iron and Steel Research, 2004, 16(3): 44-48. [21] 高 丽. 铌在钢中的结构及铌对钢性能影响的第一性原理计算[D]. 包头: 内蒙古科技大学, 2013. [22] 徐祖耀, 李学敏. 低碳马氏体形成时碳的扩散[J]. 金属学报, 1983, 19(2): 27-28, 83-88. Xu Zuyao, Li Xuemin. Diffusion of carbon during the formation of low-carbon martensite[J]. Acta Metallurgica Sinica,1983, 19(2): 27-28, 83-88. [23] 颜 睿. 激光熔覆中高碳钢马氏体组织的阶梯回火机理研究[D]. 武汉: 华中科技大学, 2021. [24] 刘铖霖. 铌对高碳钢正火态和退火态组织的影响[D]. 昆明: 昆明理工大学, 2019. [25] Gavriljuk V G. Decomposition of cementite in pearlitic steel due to plastic deformation[J]. Materials Science and Engineering A, 2003, 345(1/2): 81-89. [26] Liu P C, Wang Z X, Cong J H, et al, The significance of Nb interface segregation in governing pearlitic refinement in high carbon steels[J]. Materials Letters, 2020, 279: 128520. [27] 陈婉芳, 袁晓敏, 陈明华. 低碳微合金钢微观组织的纳米压痕研究[J]. 安徽工业大学学报(自然科学版), 2014, 31(1): 39-42. Chen Wanfang, Yuan Xiaomin, Chen Minghua. Investigation on the nanoindentation of microstructure in low carbon microalloyed high strength steel[J]. Journal of Anhui University of Technology(Natural Science), 2014, 31(1): 39-42. [28] 冯路路, 吴开明, 乔文玮, 等. Nb对高碳钢珠光体球化的影响[J]. 钢铁研究学报, 2020, 32(8): 734-739. Feng Lulu, Wu Kaiming, Qiao Wenwei, et al. Effect of Nb on spheroidization of pearlitic for high carbon steel[J]. Journal of Iron and Steel Research, 2020, 32(8): 734-739. [29] Jia N, Shen Y F, Liang J W, et al. Nanoscale spheroidized cementite induced ultrahigh strength-ductility combination in innovatively processed ultrafine-grained low alloy medium-carbon steel[J]. Scientific Reports, 2017, 7(1): 2679. |