[1] 刘 俊, 龚梦辉, 周华西. 极限载荷下滚珠丝杠疲劳弹性寿命可靠性分析[J]. 组合机床与自动化加工技术, 2023(10): 150-154. Liu Jun, Gong Menghui, Zhou Huaxi. Fatigue elastic life reliability analysis of ball screw under ultimate load [J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023(10): 150-154. [2] 林 成, 王禹林, 欧 屹, 等. 滚珠丝杠副外滚道研磨工艺参数优化试验研究[J]. 组合机床与自动化加工技术, 2019(2): 108-111. Lin Cheng, Wang Yulin, Ou Yi, et al. Parameter optimization on the lapping of raceway tracks of ball screws by experiment research [J]. Modular Machine Tool and Automatic Manufacturing Technique, 2019(2): 108-111. [3] 罗 昊. 基于过象限的工业母机用滚珠丝杠副试验研究[D]. 南京: 南京理工大学, 2023. [4] 冷 洁. 我国机床行业发展现状与问题思考[J]. 锻压装备与制造技术, 2023, 58(3): 136-138. Leng Jie. China's machine tool industry development status and problems thinking [J]. China Metalforming Equipment and Manufacturing Technology, 2023, 58(3): 136-138. [5] 田文华, 孙 超. 感应热处理站在行业新的起点上——2017年第三届高端感应热处理技术交流会报道[J]. 金属加工(热加工), 2018(1): 2-4. [6] 朱会文. 上海感应热处理的发展和现状[J]. 金属加工(热加工), 2011(13): 11-13. [7] 房紫璐, 龚 直, 李玉玲, 等. 基于ANSYS的电磁感应加热系统仿真与实验[J]. 实验技术与管理, 2021, 38(5): 129-133. Fang Zilu, Gong Zhi, Li Yuling, et al. Simulation and experiment of electromagnetic induction heating system based on ANSYS [J]. Experimental Technology and Management, 2021, 38(5): 129-133. [8] 倪光正, 崔 翔. 工程电磁场原理[M]. 北京: 高等教育出版社, 2006. [9] 吴元徽. 滚珠丝杠表面感应淬火的质量控制[J]. 金属热处理, 2011, 36(1): 120-121. Wu Yuanhui. Quality control of surface inductive quenching for ball screw [J]. Heat Treatment of Metals, 2011, 36(1): 120-121. [10] Luo J, Shih A J. Inverse heat transfer solution of the heat flux due to induction heating [J]. Journal of Manufacturing Science and Engineering, 2005, 127(3): 555-563. [11] 文怀宇. 风电齿轮感应加热过程温度演化及均匀性研究[D]. 秦皇岛: 燕山大学, 2021. [12] 沈庆通. 感应加热进展50年[J]. 机械工人, 2006(7): 36-40. [13] Li Z, Shivpuri R. Optimum design of the heat-transfer coefficient during gas quenching using the response surface method [J]. International Journal of Machine Tools & Manufacture: Design, Research and Application, 2002, 42(5): 549-558. [14] Majorek A, Scholtes B, Muller H, et al. Influence of heat transfer on the development of residual stresses in quenched steel cylinders [J]. Steel Research, 1994, 65(4): 146-151. [15] Todaka T, Enokizono M. Optimal design method with the boundary element for high-frequency quenching coil [J]. IEEE Transactions on Magnetics, 1996, 32(3): 1262-1265. [16] Kayacan M C, Colak O. A fuzzy approach for induction hardening parameters selection [J]. Materials & design, 2004, 25(2): 155-161. [17] Yang B J,Hattiangadi A, Li W Z, et al. Simulation of steel microstructure evolution during induction heating [J]. Materials Science and Engineering A, 2010, 527(12): 2978-2984. [18] Zhang G Y, Xi X Q, Zhang W Y. Optimization of induction quenching process parameters and prediction of microstructure and hardness distribution for S45C steel shaft [J]. Transactions of Materials and Heat Treatment, 2013, 34(6): 174-179. [19] Homberg D, Petzold T, Rocca E. Analysis and simulations of multifrequency induction hardening [J]. Nonlinear Analysis: Real World Applications, 2015, 22(1): 84-97. [20] Pacheco P, Savi M A,Camarao A F. Analysis of residual stresses generated by progressive induction hardening of steel cylinders [J]. The Journal of Strain Analysis for Engineering Design, 2001, 36(5): 507-516. [21] Wang K F, Chandrasekar S, Yang H T Y. Finite-element simulation of moving induction heat treatment [J]. Journal of Materials Engineering and Performance, 1995(4): 460-473. [22] Melander M. Theoretical and experimental study of stationary and progressive induction hardening [J]. Journal of Heat Treating, 1985, 4(2): 145-166. [23] Kranjc M,Zupanic A, Miklavcic D, et al. Numerical analysis and thermographic investigation of induction heating [J]. International Journal of Heat and Mass Transfer, 2010, 53(17/18): 3585-3591. [24] Schwenk M, Hoffmeister J, Schulze V. Experimental determination of process parameters and material data for numerical modeling of induction hardening [J]. Journal of Materials Engineering and Performance, 2013, 22(7): 1861-1870. [25] Palin-Luc T,Coupard D, Dumas C, et al. Simulation of multiaxial fatigue strength of steel component treated by surface induction hardening and comparison with experimental results [J]. International Journal of Fatigue, 2011, 33(8): 1040-1047. [26] Verl A, Frey S. Correlation between feed velocity and preloading in ball screw drives [J]. CIRP Annals, 2010, 59(1): 429-432. [27] Dutka V A,Maistrenko A L, Lukash V A, et al. Computer-aided and experimental study of hardness distribution in cutting tool steel body due to phase transformations during induction hardening [J]. Journal of Superhard Materials, 2012, 34(2): 131-140. [28] Li H, He L, Gai K, et al. Numerical simulation and experimental investigation on the induction hardening of a ball screw [J]. Materials & Design, 2015(87): 863-876. [29] 孙 颖, 贺连芳, 李志超, 等. 滚珠丝杠仿形感应淬火工艺设计及数值模拟[J]. 材料热处理学报, 2022, 43(2): 161-169. Sun Ying, He Lianfang, Li Zhichao, et al. Process design and numerical simulation of profiling induction hardening of ball screw [J]. Transactions of Materials and Heat Treatment, 2022, 43(2): 161-169. [30] 崔洪芝, 李永凤, 孙金全, 等. GCr15钢滚珠丝杠感应淬火漏磁控制及耐磨性[J]. 材料热处理学报, 2013, 34(8): 129-135. Cui Hongzhi, Li Yongfeng, Sun Jinquan, et al. Controlling of magnetic flux leakage and wear resistance of GCr15 steel ball screw by induction hardening [J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 129-135. [31] 汪友华, 吴建成, 刘成成, 等. 横向磁通连续感应加热过程中带材涡流场和温度场的仿真分析[J]. 金属热处理, 2019, 44(1): 229-234. Wang Youhua, Wu Jiancheng, Liu Chengcheng, et al. Simulation and analysis of eddy current field and temperature field of strips during transverse flux continuous induction heating [J]. Heat Treatment of Metals, 2019, 44(1): 229-234. [32] 王晓娜, 方 旭, 唐 波, 等. 脉冲式感应加热电源频率跟踪技术的研究与实现[J]. 电工技术学报, 2018, 33(18): 4357-4364. Wang Xiaona, Fang Xu, Tang Bo, et al. Research and implementation of a frequency tracking technology for the pulsed induction heating power [J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4357-4364. [33] 丑幸荣, 周国华. 数控曲轴旋转感应淬火机床的控制系统[J]. 制造技术与机床, 1998(8): 16-18. Chou Xingrong, Zhou Guohua. Control system of NC rotary inductance quenching machine for crankshaft [J]. Manufacturing Technology and Machine Tool, 1998(8): 16-18. |