[1] 王 虹. 综采工作面智能化关键技术研究现状与发展方向[J]. 煤炭科学技术, 2014, 42(1): 60-64. Wang Hong. Development orientation and research state on intelligent key technology in fully-mechanized coal mining face[J]. Coal Science and Technology, 2014, 42(1): 60-64. [2] 刘俊峰, 唐恩贤, 许永祥, 等. 大采高智能化开采煤壁全过程精准控制技术研究[J]. 煤炭科学技术, 2019, 47(10): 131-135. Liu Junfeng, Tang Enxian, Xu Yongxiang, et al. Study on full process precision control technology of coal wall underlarge mining height intelligent mining condition[J]. Coal Science and Technology, 2019, 47(10): 131-135. [3] 张浩杰. 煤矿采煤技术的发展与自动化技术应用探析[J]. 能源与节能, 2023(11): 146-148. Zhang Haojie. Development of coal mining technology and application of automation technology in coal mines[J]. Energy and Energy Conservation, 2023(11): 146-148. [4] 王振乾, 章立强, 周常飞. 国内外电牵引采煤机对比研究及展望[J]. 煤炭工程, 2021, 53(3): 171-178. Wang Zhenqian, Zhang Liqiang, Zhou Changfei. Comparative study and prospect of domestic electrical haulage shearers[J]. Coal Engineering, 2021, 53(3): 171-178. [5] 张世洪. 我国滚筒式采煤机技术现状与发展思考[J]. 煤炭工程, 2014, 46(10): 54-57. Zhang Shihong. Thinking on current situation and development of drum shearer in China[J]. Coal Engineering, 2014, 46(10): 54-57. [6] 冯泾若, 张 纯, 杨健康, 等. 国内外滚筒式采煤机的大修周期和设计寿命[J]. 煤炭科学技术, 2007, 35(7): 67-70. Feng Jingruo, Zhang Chun, Yang Jiankang, et al. Overhaul period and designed service life of drum coal shearers at home and abroad[J]. Coal Science and Technology, 2007, 35(7): 67-70. [7] 李 锋, 刘志毅. 现代采掘机械[M]. 北京: 煤炭工业出版社, 2016. [8] 孙月华, 赵存友, 王本用. 煤矿采掘机械[M]. 北京: 中国矿业大学出版社, 2014. [9] 王振乾. 滚筒式采煤机行走机构运动学分析及强度研究[D]. 北京: 煤炭科学研究总院, 2007. Wang Zhenqian. Kinematic analysis and strength study for haulage mechanism of drum shearer[D]. Beijing: China Coal Research Institute, 2007. [10] 张军辉. 我国煤矿采煤机的研制回顾, 现状以及发展[J]. 煤矿机械, 2008, 29(3): 1-3. Zhang Junhui. Review, current status and prospect of coal mining machine development of our country[J]. Coal Mine Machinery, 2008, 29(3): l-3. [11] 王 旭. 双滚筒采煤机行走装置强度分析及优化设计[D]. 沈阳: 东北大学, 2012. Wang Xu. The strength analysis and optimal design of double-drum shearer loader's running system[D]. Shenyang: Northeastern University, 2012. [12] 于月森, 左 腾, 周 娟, 等. 薄煤层综采工作面自动化技术综述[J]. 工矿自动化, 2013, 39(5): 27-30. Yu Yuesen, Zuo Teng, Zhou Juan, et al. Review of automation technology for fully mechanized coal face of thin seam[J]. Journal of Mine Automation, 2013, 39(5): 27-30. [13] 魏 升. 采煤机行走轮齿根断裂特性分析[D]. 上海: 煤科总院上海分院, 2013. Wei Sheng. Fracture characteristics analysis of shearer sprocket tooth root[D]. Shanghai: Shanghai Branch of Coal Science Institute, 2013. [14] 王晟东, 苏晓静, 徐凌雪, 等. 采煤机齿轨轮失效原因分析及预防措施[J]. 金属加工(热加工), 2020(6): 53-55. Wang Shengdong, Su Xiaojing, Xu Lingxue, et al. Analysis of failure causes and precautionary measures of shearer wheel[J]. MW Metal Forming, 2020(6): 53-55. [15] 李京东. 煤机用行走轮组织性能及制造工艺研究[D]. 南京: 南京理工大学, 2016. Li Jingdong. Research on the microstructure, performance, and manufacturing process of walking wheels for coal mining machines[D]. Nanjing: Nanjing University of Technology, 2016. [16] 栗佳龙. 采煤机行走轮磨损原因分析与改进策略研究[J]. 矿业装备, 2022(5): 231-233. [17] 田 林, 闫雪侠, 朱 科, 等. 齿轨轮深层渗碳工艺[J]. 金属加工(热加工), 2015(7): 36-37. [18] 严海纲. 采煤机行走轮断齿失效分析研究[J]. 机械工业标准化与质量, 2014(4): 43-45. [19] 宋英伟. 采矿机械齿轮断齿的常见成因及应对策略思考[J]. 世界有色金属, 2023(1): 28-30. Song Yingwei. Common causes and countermeasures of gear tooth breakage in mining machinery[J]. World Nonferrous Metals, 2023(1): 28-30. [20] 钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006. [21] 许龙顺. 采矿机械齿轮断齿原因及解决措施[J]. 机械管理开发, 2018, 33(7): 249-250. Xu Longshun. Causes and solutions of gear broken teeth in mining machinery[J]. Mechanical Management and Development, 2018, 33(7): 249-250. [22] 赵 武, 李德昌, 刘 威, 等. 采煤机行走轮断裂原因分析及改进措施[J]. 煤矿机械, 2015, 36(5): 308-309. Zhao Wu, Li Dechang, Liu Wei, et al. Analysis on fracture and improve method of shearer wheel[J]. Coal Mine Machinery, 2015, 36(5): 308-309. [23] 彭 毅, 吴胜利, 邢文婷, 等. 轮齿表面剥落故障劣化机制动力学模型研究[J]. 机械传动, 2023, 47(10): 10-16, 42. Peng Yi, Wu Shengli, Xing Wenting, et al. Study on the spalling fault degradation mechanism and dynamic model of gear tooth surfaces[J]. Journal of Mechanical Transmission, 2023, 47(10): 10-16, 42. [24] 何翠珍. 渐开线圆柱齿轮面塑性变形的理论分析[J]. 现代制造技术与装备, 2010(2): 33-34. He Cuizhen. Theoretical analysis of the plastic deformation on the involute gear's tooth surface[J]. Modern Manufacturing Technology and Equipment, 2010(2): 33-34. [25] 王培科, 王维发. 采煤机齿轨轮淬裂原因分析及防治措施[C] //陕西省机械工程学会理化检验分会年会. 2013: 9-11. [26] 李志刚. 采矿机械齿轮断齿原因分析及其预防措施[J]. 中国金属通报, 2018(9): 63, 65. [27] 胡 璟. 单滚筒短壁采煤机采高检测装置及检测方法[C] //煤炭开采智能化、信息化新技术及应用2016年学术年会论文集. 2016: 6-8. [28] 李 明. 采煤机齿轨轮断齿问题分析与改进研究[J]. 机械管理开发, 2020, 35(7): 124-125, 142. Li Ming. Analysis and improvement of broken tooth of shearer gear rail wheel[J]. Mechanical Management and Development, 2020, 35(7): 124-125, 142. [29] 王培科, 王维发. 满滚子轴承滚柱脱落与掉块原因分析[J]. 理化检验(物理分册), 2010, 46(12): 791-793, 797. Wang Peike, Wang Weifa. Sunface exfoliation and flaking reason analysis on rollers of full ball bearing[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2010, 46(12): 791-793, 797. [30] 赵亚东, 谭 超, 徐建超. 采煤机行走轮失效分析及改进方法[J]. 煤矿机械, 2011, 32(5): 167-168. Zhao Yadong, Tan Chao, Xu Jianchao. Analysis on failure and improved method of shearer wheel[J]. Coal Mine Machinery, 2011, 32(5): 167-168. [31] 尚可超, 廖云鑫, 李玉华. 基于Deform仿真的18Cr2Ni4WA齿轨轮多次叠加渗碳淬火试验及工艺改进研究[J/OL]. 热加工工艺. https://doi.org/10.14158/j.cnki.1001-3814.20212635 Shang Kechao, Liao Yunxin, Li Yuhua. Research on multiple superposition carburizing quenching test and process improvement of 18Cr2Ni4WA gar rail wheel based on deform simulation[J]. Hot Working Technology. https://doi.org/10.14158/j.cnki.1001-3814.20212635 [32] 乐 平, 黄海清, 郁凉峰. 18Cr2Ni4WA钢渗碳后淬火工艺对组织和性能的影响[J]. 热处理, 2008, 23(5): 28-34. Le Ping, Huang Haiqing, Yu Liangfeng. Effect of quenching process on microstructure and property of carburized 18Cr2Ni4WA steel[J]. Heat Treatment, 2008, 23(5): 28-34. [33] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [34] 徐祖耀. 淬火-碳分配-回火(Q-P-T)工艺浅介[J]. 金属热处理, 2009, 34(6): 1-8. Xu Zuyao. A brief introduction to quenching-partitioning-tempering (Q-P-T) process[J]. Heat Treatment of Metals, 2009, 34(6): 1-8. |