[1] Liu J, Wang X, Liu J, et al. The effect of heat treatment on the microstructure evolution and properties of an age-hardened Cu-3Ti-2Mg alloy[J]. Archives of Metallurgy and Materials, 2021, 66(1): 163. [2] Liu F, Li J, Peng L, et al. Simultaneously enhanced hardness and electrical conductivity in a Cu-Ni-Si alloy by addition of cobalt[J]. Journal of Alloys and Compounds, 2021, 862: 158667. [3] Cheng J Y, He K Z, Deng M Q, et al. Microstructural evolution and properties of Cu-1.5wt%Ti alloy during aging[J]. Materials Science Forum, 2020, 993: 183-193. [4] Wang W, Kang H J, Chen Z N, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering A, 2016, 673: 378-390. [5] Li R, Kang H J, Chen Z N, et al. A promising structure for fabricating high strength and high electrical conductivity copper alloys[J]. Scientific Reports, 2016, 6(1): 20799. [6] Su J, Jia S, Ren F. Simulation analysis of minimum bending radius for lead frame copper alloys[J]. Engineering Review, 2013, 33(2): 101-106. [7] Zhang Z J, Pang J C, Zhang Z F. Optimizing the fatigue strength of ultrafine-grained Cu-Zn alloys[J]. Materials Science and Engineering A, 2016, 666: 305-313. [8] Pang Y, Xia C, Wang M, et al. Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu-Cr alloy[J]. Journal of Alloys & Compounds, 2014, 582: 786-792. [9] Mahmudi R, Karsaz A, Akbari-Fakhrabadi A, et al. Impression creep study of a Cu-0.3Cr-0.1Ag alloy[J]. Materials Science and Engineering A, 2010, 527(10): 2702-2708. [10] Watanabe C, Monzen R, Tazaki K. Mechanical properties of Cu-Cr system alloys with and without Zr and Ag[J]. Journal of Materials Science, 2008, 43(3): 813-819. [11] Yang Y H, Li S Y, Cui Z S, et al. Microstructure and properties of high-strength Cu-Ni-Si-(Ti) alloys[J]. Rare Metals, 2021, 40: 3251-3260. [12] Liu J, Liu J T, Wang X H. Phase-transformation dynamics and characterization of precipitates in the Cu-3Ti-3Ni-0.5Si alloy[J]. Materials and Technology, 2021, 55(4): 483-489. [13] Kim H G, Lee T W, Kim S M, et al. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys[J]. Metals and Materials International, 2013, 19(1): 61-65. [14] Liu J, Wang X H, Guo T T, et al. Microstructural evolution and properties of aged Cu-3Ti-3Ni alloy[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1162-1167. [15] Liu J, Wang X, Guo T, et al. Microstructure and properties of Cu-Ti-Ni alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1199-1204. [16] Liu J, Wang X, Ran Q, et al. Microstructure and properties of Cu-3Ti-1Ni alloy with aging process[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3183-3188. [17] Zhang P, Li Y, Lei Q, et al. Microstructure and mechanical properties of a CuNiTi alloy with a large product of strength and elongation[J]. Journal of Materials Research and Technology, 2020, 9(2): 2299-2307. [18] Wang J, Que Z P, Chen J, et al. The experiment of interference sources to transient electromagnetic method in mine[J]. Journal of Taiyuan University of Technology, 2015, 46(1): 35-39. [19] 王 剑, 陈 津, 阙仲萍. 合金元素Sn对Cu-Ni-Ti合金微观组织和性能的影响[J]. 太原理工大学学报, 2018, 49(4): 517-524. Wang Jian, Chen Jin, Que Zhongping. Effect of Sn on microstructure and properties of Cu-Ni-Ti alloys[J]. Journal of Taiyuan University of Technology, 2018, 49(4): 517-524. [20] Ryoichi M, Hiroshi I. On age hardenable Cu-Ni-Ti and Cu-Ni-Ti-Al alloys for electrical appliances[J]. Journal of the Japan Institute of Metals, 1965, 29(2): 177-184. [21] Du Y, Zhou Y, Song K, et al. Zr-containing precipitate evolution and its effect on the mechanical properties of Cu-Cr-Zr alloys[J]. Journal of Materials Research and Technology, 2021, 14: 1451-1458. [22] Ye Y, Yang X, Wang J, et al. Enhanced strength and electrical conductivity of Cu-Zr-B alloy by double deformation-aging process[J]. Journal of Alloys and Compounds, 2014, 615: 249-254. [23] Azimi M, Akbari G H. Development of nano-structure Cu-Zr alloys by the mechanical alloying process[J]. Journal of Alloys and Compounds, 2011, 509(1): 27-32. [24] Kapoor K, Lahiri D, Batra I S, et al. X-ray diffraction line profile analysis for defect study in Cu-1wt%Cr-0.1wt%Zr alloy[J]. Materials Characterization, 2005, 54(2): 131-140. [25] Lv G, Feng Y, Wang R, et al. Microstructure evolution and mechanical properties for rapidly solidified Cu-3Ag-0.5Zr alloy during isothermal compression[J]. Materials Science and Engineering A, 2021, 800: 140198. [26] Gaganov A, Freudenberger J, Botcharova E, et al. Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu-7wt%Ag alloys[J]. Materials Science and Engineering A, 2006, 437(2): 313-322. [27] Bittner F, Yin S, Kauffmann A, et al. Dynamic recrystallisation and precipitation behavior of high strength and highly conducting Cu-Ag-Zr alloys[J]. Materials Science and Engineering A, 2014, 597: 139-147. [28] 曹兴民, 李华清, 向朝建, 等. Zr的加入对Cu-Ti合金耐热性能影响的研究[J]. 热加工工艺, 2008(14): 16-18. Cao Xingmin, Li Huaqing, Xiang Chaojian, et al. Effect of Zr on heat-resistance of Cu-Ti alloy[J]. Hot Working Technology, 2008(14): 16-18. [29] Hämäläinen M, Bochvar N, Rokhlin L L, et al. Thermodynamic evaluation of the Cu-Mg-Zr system[J]. Journal of Alloys and Compounds, 1999, 285(1/2): 162-166. [30] Shangina D V, Bochvar N R, Morozova A I, et al. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion[J]. Materials Letters, 2017, 199: 46-49. [31] Tang N Y, Taplin D M R, Dunlop G L. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium[J]. Materials Science and Technology, 1985, 1(4): 270-275. [32] Fu H, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Materials Science and Engineering A, 2017, 700: 107-115.[33] Li G Y, Li S Y, Li L, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy prepared by aging and subsequent cryorolling[J]. Vacuum, 2021, 190: 110315. [34] Wang K, Liu K F, Zhang J B, et al. Microstructure and properties of aging Cu-Cr-Zr alloy[J]. Rare Metals, 2014, 33: 134-138. [35] Liu P, Kang B X, Cao X G, et al. Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy[J]. Chinese Journal of Nonferrous Metals, 1999, 265(1/2): 262-267. [36] Zhao Z, Xiao Z, Li Z, et al. Microstructure and properties of a Cu-Ni-Si-Co-Cr alloy with high strength and high conductivity[J]. Materials Science and Engineering A, 2019, 759: 396-403. [37] Li J Z, Ding H, Li B M, et al. Microstructure evolution and properties of a Cu-Cr-Zr alloy with high strength and high conductivity[J]. Materials Science and Engineering A, 2021, 819: 141464. |