[1]何斌锋. TC4钛合金激光熔覆NiCrAl+TiC涂层的性能[J]. 金属热处理, 2019, 44(9): 69-73. He Binfeng. Properties of laser cladding NiCrAl + TiC composite coatings on TC4 titanium alloy[J]. Heat Treatment of Metals, 2019, 44(9): 69-73. [2]Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering: A, 1996, 213: 103-114. [3]王 涛, 王 宁, 李 阳, 等. 激光熔覆TC4钛合金的静态力学性能[J]. 金属热处理, 2018, 43(5): 50-55. Wang Tao, Wang Ning, Li Yang, et al. Static mechanical properties of laser-clad TC4 titanium alloy[J]. Heat Treatment of Metals, 2018, 43(5): 50-55. [4]黄张洪, 曲恒磊, 邓 超, 等. 航空用钛及钛合金的发展及应用[J]. 材料导报, 2011(25): 36-45. Huang Zhanghong, Qu Henglei, Deng Chao, et al. Development and application of aerial titanium and its alloys[J]. Materials Reports, 2011(25): 36-45. [5]刘家奇, 宋明磊, 陈传忠, 等. 钛合金表面激光熔覆技术的研究进展[J]. 金属热处理, 2019, 44(5): 87-96. Liu Jiaqi, Song Minglei, Chen Chuanzhong, et al. Research progress of laser cladding technology on surface of titanium alloy[J]. Heat Treatment of Metals, 2019, 44(5): 87-96. [6]王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1-26. Wang Qingjiang, Liu Jianrong, Yang Rui. High temperature titanium alloys: status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26. [7]张伟堂. 临近空间超声速飞行器短时热强钛合金应用分析[J]. 航空制造技术, 2018, 61(Z1): 76-81. Zhang Weitang. Analysis on application of short-time and heat-resistant titanium alloys on near-space supersonic aerocraft[J]. Aeronautical Manufacturing Technology, 2018, 61(Z1): 76-81. [8]Yang Y, Wang Y, Tian W, et al. Nanocomposite powder with three-dimensional network structure for preparing alumina-titania nanocomposite coating with advanced performance[J]. Journal of Alloys and Compounds, 2015, 622: 929-934. [9]Chen S, Xiang J, Huang J, et al. Microstructures and properties of double-ceramic-layer thermal barrier coatings of La2 (Zr0.7Ce0.3)2O7/8YSZ made by atmospheric plasma spraying[J]. Applied Surface Science, 2015, 340: 173-181. [10]Chang F, Zhou K, Tong X, et al. Microstructure and thermal shock resistance of the peg-nail structured TBCs treated by selective laser modification[J]. Applied Surface Science, 2014, 317: 598-606. [11]Ramaswamy P, Seetharamu S, Varma K B R, et al. Al2O3-ZrO2 composite coatings for thermal-barrier applications[J]. Composites Science and Technology, 1997, 57(1): 81-89. [12]Chraska T, Neufuss K, Dubsky J, et al. Fabrication of bulk nanocrystalline alumina-zirconia materials[J]. Ceramic International, 2008, 34(5): 1229-1236. [13]Tarasi F, Medraj M, Dolatabadi A, et al. Amorphous and crystalline phase formation during suspension plasma spraying of the alumina-zirconia composite[J]. Journal of the European Ceramic Society, 2011, 31(15): 2903-2913. [14]Wang Yuling, Li Cheng, Jiang Fulin, et al. Microstructure and mechanical properties of ultrasonic assisted laser cladding Al2O3-ZrO2 ceramic coating[J]. Materials Research Express, 2019, 6(10): 106563. doi: 10. 1088/2053-1591/ab394a. [15]Li Ruifeng, Li Zhuguo, Huang Jian, et al. Dilution effect on the formation of amorphous phase in the laser cladded NI-Fe-B-Si-Nb coatings after laser remelting process[J]. Applied Surface Science, 2012, 258 (20): 7956-7961. [16]Huang Yongjun. Characterization of dilution action in laser-induction hybrid cladding[J]. Optics and Laser Technology, 2011, 43 (5): 965-973. [17]Andersson P. Water lubricated pin-on-disc test with ceramics[J]. Wear, 1992, 154(1): 37-47. [18]Qu C C, Li J, Bai L L, et al. Effects of the thickness of the pre-placed layer on microstructural evolution and mechanical properties of the laser-clad coatings[J]. Journal of Alloys and Compounds, 2015, 644: 450-463. |