[1]Chen L, Zheng L, Lü Y, et al. Chemical assembly of silver nanoparticles on stainless steel for antimicrobial applications[J]. Surface and Coatings Technology, 2010, 204(23): 3871-3875. [2]Wilks S A, Michels H, Keevil C W. The survival of Escherichia coli O157 on a range of metal surfaces[J]. International Journal of Food Microbiology, 2005, 105(3): 445-454. [3]敬和民, 陈四红, 董加胜, 等. 抗菌不锈钢材料及其发展现状[J]. 材料保护, 2003, 36(10): 9-12. Jing Hemin, Chen Sihong, Dong Jiasheng, et al. Anti-bacterium stainless steels and its development[J]. Journal of Materials Protection, 2003, 36(10): 9-12. [4]徐鸣悦, 王 丛, 李运刚. 抗菌不锈钢的研究进展[J]. 铸造技术, 2016(6): 1085-1089. Xu Mingyue, Wang Cong, Li Yungang. Research progress of antibacterial stainless steel[J]. Foundry Technology, 2016(6): 1085-1089. [5]杨志勇, 李文辉. 抗菌不锈钢材料的开发[J]. 金属功能材料, 2000, 7(4): 1-7. Yang Zhiyong, Li Wenhui. Development of antimicrobial stainless steel materials[J]. Metallic Functional Materials, 2000, 7(4): 1-7. [6]Dong Y, Li X, Tian L, et al. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding[J]. Acta Biomaterialia, 2011, 7(1): 447-457. [7]马 涛, 杨桂宇, 邓美乐, 等. 含铜钢的研究现状及展望[J]. 热加工工艺, 2017, 46(2): 36-39. Ma Tao, Yang Guiyu, Deng Meile, et al. Research status and prospect of copper-bearing steel[J]. Hot Working Technology, 2017, 46(2): 36-39. [8]刘 觐, 陆德平, 范众维, 等. 第二相析出对Cr-Ni系粉末冶金不锈钢耐蚀性的影响[J]. 金属热处理, 2018, 43(11): 44-48. Liu Jin, Lu Deping, Fan Zhongwei, et al. Effect of second phase precipitation on corrosion resistance of powder metallurgy Cr-Ni stainless steel[J]. Heat Treatment of Metals, 2018, 43(11): 44-48. [9]Cabrini M, Lorenzi S, Testa C, et al. Statistical approach for electrochemical evaluation of the effect of heat treatments on the corrosion resistance of AlSi10Mg alloy by laser powder bed fusion[J]. Electrochimica Acta, 2019, 305: 459-466. [10]Sabzi M, Anijdan S H M, Roghani Zadeh M, et al. The effect of heat treatment on corrosion behaviour of Ni-P-3 gr/lit Cu nano-composite coating[J]. Canadian Metallurgical Quarterly, 2018, 57(3): 350-357. [11]Sotniczuk A, Kuczyńska-Zem ŀa D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing[J]. Corrosion Science, 2019, 147: 342-349. [12]赵广辉. 退火温度对Zr-Sn-Nb-Fe合金组织和耐腐蚀性能的影响[J]. 热加工工艺, 2017, 46(8): 226-228. Zhao Guanghui. Effect of annealing temperature on microstructure and corrosion resistance of Zr-Sn-Nb-Fe alloy[J]. Hot Working Technology, 2017, 46(8): 226-228. [13]Sun S, Yin F, Liu Y, et al. Deformation-induced dissolution of copper precipitation in 1.5wt% Cu-bearing antibacterial Fe-17wt% Cr alloy during plastic deformation process[J]. Materials and Design, 2018, 157: 469-477. [14]孙小燕, 汪江节, 刘孝光, 等. 晶粒尺寸对316L不锈钢耐晶间腐蚀性能的影响[J]. 特种铸造及有色合金, 2014, 34(12): 1250-1252. Sun Xiaoyan, Wang Jiangjie, Liu Xiaoguang, et al. Influence of grain size on intergranular corrosion resistance of 316L stainless steel[J]. Special Casting and Nonferrous Alloys, 2014, 34(12): 1250-1252. [15]汪 兵, 刘清友, 王向东. 晶粒尺寸对超低碳IF钢耐大气腐蚀性能的影响[J]. 金属学报, 2012, 48(5): 601-606. Wang Bing, Liu Qingyou, Wang Xiangdong. Effect of grain size on atmospheric corrosion resistance of ultra-low carbon IF steel[J]. Acta Metallurgica Sinica, 2012, 48(5): 601-606. [16]Chen H B, Huang Z D, Jiang Y K, et al. Influence of intergranular corrosion on chromium ion release from 304 stainless steel utensils[J]. Modern Food Science and Technology, 2017, 33(6): 240-247. [17]张向军, 沈鑫珺, 张淑敏, 等. 晶粒尺寸对含铜锡中铬铁素体不锈钢耐蚀性的影响[J]. 东北大学学报(自然科学版), 2014, 35(8): 1124-1127. Zhang Xiangjun, Shen Xinjun, Zhang Shumin, et al. Influence of grain size on the corrosion resistance of medium chromium ferritic stainless steel containing Cu and Sn[J]. Journal of Northeastern University(Natural Science), 2014, 35(8): 1124-1127. |