[1]张伟锋, 赖鸿达, 宋苗苗, 等. 装配式建筑发展研究[J]. 广东土木与建筑, 2018, 25(12): 9-12. Zhang Weifeng, Lai Hongda, Song Miaomiao, et al. The development research of prefabricated architecture[J]. Guangdong Architecture Civil Engineering, 2018, 25(12): 9-12. [2]叶耀先. 如何发挥装配式建筑最大优势[J]. 建筑, 2017(14): 12-16. [3]曲之扬. 装配式建筑结构技术[J]. 工程技术, 2018(13): 920. [4]康 健. 780 MPa级低屈强比建筑结构用钢组织调控与工艺开发[D]. 沈阳: 东北大学, 2012. Kang Jian. Microstructural control and processing development of 780 MPa grade low yield ratio construction steel[D]. Shenyang: Northeastern University, 2012. [5]周志伟, 康永林, 张 建, 等. Ca变质处理耐候钢耐蚀性能的研究[J]. 轧钢, 2008, 25(1): 16-20. Zhou Zhiwei, Kang Yonglin, Zhang Jian, et al. Study on corrosion-resistance properties of calcium-modified weathering steel[J]. Steel Rolling, 2008, 25(1): 16-20. [6]翁 镭, 吴红艳, 杜林秀. 高钛耐候钢在模拟海洋气候下的腐蚀行为[J]. 材料热处理学报, 2018, 39(5): 94. Weng Lei, Wu Hongyan, Du Linxiu. Corrosion behavior of high-Ti weathering resistant steel in simulated marine climate[J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 94. [7]包 胜, 谢昕欣, 郭红锋. Q355GNH耐候钢板表面防腐研究[J]. 涂料工业, 2015, 45(3): 69-72. Bao Sheng, Xie Xinxin, Guo Hongfeng. Anticorrosive surface treatment of weathering resistant steel Q355GNH[J]. Paint and Coatings Industry, 2015, 45(3): 69-72. [8]吴 勇. 420 MPa级低屈强比高强度建筑用钢板的开发[J]. 宝钢技术, 2017(2): 60-64. Wu Yong. Development of 420 MPa low yield tensile ratio and high strength steel plate for building structure[J]. Baosteel Technology, 2017(2): 60-64. [9]张开广, 童明伟, 范 巍. 460 MPa级高强度低屈强比钢的研制[J]. 钢结构, 2016(3): 40-43. Zhang Kaiguang, Tong Mingwei, Fan Wei. Research and development of 460 MPa grade steel with high strength and low yield ratio[J]. Steel Construction, 2016(3): 40-43. [10]唐 帅. 低屈强比590 MPa级建筑结构用钢开发[D]. 沈阳: 东北大学, 2010. Tang Shuai. Development of 590 MPa grade low yield ratio construction steel[D]. Shenyang: Northeastern University, 2010. [11]李小宝, 曾仰正, 张 宇, 等. 屈服强度460 MPa级耐候钢及其焊接性能[J]. 钢铁研究学报, 2014, 26(8): 57-63. Li Xiaobao, Zeng Yangzheng, Zhang Yu, et al. Weathering steel with a yield strength of 460 MPa and its weldability[J]. Journal of Iron and Steel Research, 2014, 26(8): 57-63. [12]曾尚武, 徐德录, 郭晓宏, 等. 输电铁塔用耐候钢的研制[J]. 新技术新工艺, 2017(10): 57-60. Zeng Shangwu, Xu Delu, Guo Xiaohong, et al. Development of weathering steel for transmission tower[J]. New Technology and New Process, 2017(10): 57-60. [13]续伟霞, 郑为为, 石俊亮, 等. 新型耐候钢连续冷却转变曲线的测定[J]. 材料热处理学报, 2007, 28(5): 71-72. Xu Weixia, Zheng Weiwei, Shi Junliang, et al. Continuous cooling transformation curve of a weathering steel[J]. Transactions of Materials and Heat Treatment, 2007, 28(5): 71-72. [14]利成宁, 袁 国, 康 健, 等. 含Ti微合金低碳钢连续冷却过程中组织演变行为[J]. 材料热处理学报, 2016, 37(5): 77-80. Li Chengning, Yuan Guo, Kang Jian, et al. Transformation behavior of Ti microalloyed low carbon steel during continuous cooling[J]. Transactions of Materials and Heat Treatment, 2016, 37(5): 77-80. [15]吕红英, 周旭东, 陈学文. QP980钢CCT曲线的测定[J]. 材料热处理学报, 2018, 39(4): 142-143. Lü Hongying, Zhou Xudong, Chen Xuewen. Determination of CCT curves of QP980 steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(4): 142-143. |