[1]潘品李, 钟约先, 马庆贤, 等. 大型核电主管道制造技术的发展[J]. 锻压装备与制造技术, 2011, 46(1): 13-17. Pan Pingli, Zhong Yuexian, Ma Qingxian, et al. Development of manufacture technology for main pipe of large-sized nuclear power[J]. China Metal Forming Equipment and Manufacturing Technology, 2011, 46(1): 13-17. [2]张 磊, 冯 潇, 李明权, 等. 核电主管道制造工艺发展[J]. 锻压技术, 2014, 39(6): 1-8. Zhang Lei, Feng Xiao, Li Mingquan, et al. Development of nuclear power main-pipe manufacturing technology[J]. Forging and Stamping Technology, 2014, 39(6): 1-8. [3]吴家凯, 陈 娟. AP1000核电站常规岛主要热力管道材料选择[J]. 广东电力, 2010, 23(2): 75-79. Wu Jiakai, Chen Juan. Selection of main thermodynamic piping materials of AP1000 nuclear power station conventional island[J]. Guangdong Electric Power, 2010, 23(2): 75-79. [4]秦丽雁, 张寿禄, 宋诗哲. 典型不锈钢晶间腐蚀敏化温度的研究[J]. 中国腐蚀与防护学报, 2006, 26(1): 1-5. Qin Liyan, Zhang Shoulu, Song Shizhe. Sensitive temperature for intergranular corrosion of typical stainless steels[J]. Journal of Chinese Society for Corrosion and Protection, 2006, 26(1): 1-5. [5]韩永珍, 李 俏, 胡小丽, 等. 基于计算机模拟的智能化热处理的研究进展[J]. 金属热处理, 2017, 42(7): 194-199.Han Yongzhen, Li Qiao, Hu Xiaoli, et al. Research progress of intelligent heat treatment based on computer simulation[J]. Heat Treatment of Metals, 2017, 42(7): 194-199. [6]雷文光, 毛小楠, 卢亚锋, 等. TC21钛合金锻件淬火过程温度场及热应力场数值模拟[J]. 稀有金属材料与工程, 2011, 40(10): 1721-1726. Lei Wenguang, Mao Xiaonan, Lu Yafeng, et al. Numerical simulation of temperature field and thermal stress field in quenching process of TC21 titanium alloy forging[J]. Rare Metal Materials and Engineering, 2011, 40(10): 1721-1726. [7]龚雪婷, 武志广, 李 鑫, 等. 2.25Cr1Mo钢大型锻件热处理工艺数值模拟[J]. 金属热处理, 2019, 44(3): 192-197. Gong Xueting, Wu Zhiguang, Li Xin, et al. Numerical simulation on heat treatment process of 2.25Cr1Mo steel large forgings[J]. Heat Treatment of Metals, 2019, 44(3): 192-197. [8]顾剑锋, 潘建生, 胡明娟. 淬火冷却过程中表面综合换热系数的反传热分析[J]. 上海交通大学学报, 1998, 32(2): 19-22. Gu Jianfeng, Pan Jiansheng, Hu Mingjuan. Inverse heat conduction analysis of synthetic surface heat transfer coefficient during quenching process[J]. Journal of Shanghai Jiao Tong University, 1998, 32(2):19-22. [9]Kim H K, Oh S I. Evaluation of heat transfer coefficient during heat treatment by inverse analysis[J]. Journal of Materials Processing Technology, 2011, 112(2/3): 157-165. [10]李凡成, 李静媛. 铝合金淬火过程换热系数的反求法[J]. 铝加工, 2013(4): 12-17. Li Fancheng, Li Jingyuan. An inverse method for solution of heat transfer coefficient during quenching of aluminum alloy[J]. Aluminium Fabrication, 2013(4): 12-17. [11]温 柳, 刘露露, 高 萌, 等. 6061铝合金淬火冷却过程中的表面换热系数[J]. 金属热处理, 2011, 36(10): 59-62. Wen Liu, Liu Lulu, Gao Meng, et al. Surface heat transfer coefficient of 6061 aluminum alloy during quenching[J]. Heat Treatment of Metals, 2011, 36(10): 59-62. [12]张 文, 朱百智, 黄振建, 等. 淬火介质对42CrMo钢棒淬火组织及硬度影响的数值模拟及试验验证[J]. 金属热处理, 2020, 45(1): 56-60. Zhang Wen, Zhu Baizhi, Huang Zhenjian, et al. Numerical simulation and experimental verification of effect of quenching medium on quenching microstructure and hardness of 42CrMo steel rod[J]. Heat Treatment of Metals, 2020, 45(1): 56-60. |