[1]许德美, 秦高梧, 李 峰, 等. 国内外铍及含铍材料的研究进展[J]. 中国有色金属学报, 2014, 24(5): 1212-1223. Xu Demei, Qin Gaowu, Li Feng, et al. Advances in beryllium and beryllium-containing materials[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1212-1223. [2]Zhang H T, Jiang Y B, Xie J X, et al. Precipitation behavior, microstructure and properties of aged Cu-1.7wt%Be alloy[J]. Journal of Alloys and Compounds, 2019, 773: 1121-1130. [3]Tang Y C, Kang Y L, Yue L J, et al. Precipitation behavior of Cu-1.9Be-0.3Ni-0.15Co alloy during aging[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 307-315. [4]Kim J H, Jeun J H, Chun H J, et al. Effect of precipitates on mechanical properties of AA2195[J]. Journal of Alloys and Compounds, 2016, 669: 187-198. [5]郭 强, 李志强, 赵 蕾, 等. 金属材料的构型复合化[J]. 中国材料进展, 2016, 35(9): 641-650. Guo Qiang, Li Zhiqiang, Zhao Lei, et al. Metal matrix composites with microstructural architectures[J]. Materials China, 2016, 35(9): 641-650. [6]徐圣航, 周承商, 刘 咏. 金属-金属层状结构复合材料研究进展[J]. 中国有色金属学报, 2019, 29(6): 1125-1142. Xu Shenghang, Zhou Chengshang, Liu Yong. Research progress in metal-metal laminated structural composites[J]. Chinese Journal of Nonferrous Metals, 2019, 29(6): 1125-1142. [7]康福伟, 王洪滨, 汪恩浩, 等. NiTi/(Al3Ti+Al3Ni)层状复合材料的热处理及力学性能[J]. 金属热处理, 2019, 44(11): 135-139. Kang Fuwei, Wang Hongbin, Wang Enhao, et al. Heat treatment and mechanical properties of NiTi/(Al3Ti+Al3Ni) laminated composites[J]. Heat Treatment of Metals, 2019, 44(11): 135-139. [8]Qin L, Fan M Y, Guo X Z, et al. Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing[J]. Vacuum, 2018, 155: 96-107. [9]Fan G H, Wang Q W, Du Y, et al. Producing laminated NiAl with bimodal distribution of grain size by solid-liquid reaction treatment[J]. Materials Science and Engineering A, 2014, 590: 318-322. [10]Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite[J]. Scientific Reports, 2016, 6: 38461. [11]Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces[J]. Acta Materialia, 2016, 116: 43-52. [12]Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 14501-14505. [13]Esmati K, Omidvar H, Jelokhani J, et al. Study on the microstructure and mechanical properties of diffusion brazing joint of C17200 copper beryllium alloy[J]. Materials and Design, 2014, 53: 766-773. [14]李 峰, 李志年, 钟景明, 等. Be/CuCrZr高温热等静压扩散连接接头组织演化及断裂机理[J]. 稀有金属材料与工程, 2019, 48(10): 3331-3339. Li Feng, Li Zhinian, Zhong Jingming, et al. Microstructure evolution and fracture modes of Be/CuCrZr joints by hot isostatics pressing bonding at high temperature[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3331-3339. [15]姜 英, 方晓英, 王友林, 等. 不同温度轧制H68黄铜样品退火后的晶界特征分布[J]. 材料热处理学报, 2014, 35(1): 40-44. Jiang Ying, Fang Xiaoying, Wang Youlin, et al. Grain boundary character distributions of brass H68 annealed after cold rolling at different temperatures[J]. Transactions of Materials and Heat Treatment, 2014, 35(1): 40-44. [16]Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties[J]. Materials Research Letters, 2017, 5(8): 527-532. [17]Mondal C, Singh A K, Mukhopadhyay A K, et al. Tensile flow and work hardening behavior of hot cross-rolled AA7010 aluminum alloy sheets[J]. Materials Science and Engineering A, 2013, 577: 87-100. [18]Tang Y C, Kang Y L, Yue L J, et al. Mechanical properties optimization of a Cu-Be-Co-Ni alloy by precipitation design[J]. Journal of Alloys and Compounds, 2017, 695: 613-625. |