[1]Song R G, Dietzel W, Zhang, B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2004, 52(16): 4727-4743. [2]叶凌英, 杨汶卿, 唐建国, 等. 时效制度对Al-Zn-Mg合金组织和抗应力腐蚀性能的影响[J]. 工程科学学报, 2019, 41(12): 1575-1582. Ye Linying, Yang Wenqing, Tang Jianguo, et al. Effect of aging on the microstructure and stress corrosion resistance of Al-Zn-Mg alloy[J]. Chinese Journal of Engineering, 2019, 41(12): 1575-1582. [3]Takano N. Hydrogen diffusion and embrittlement in 7050 aluminum alloy[J]. Materials Science and Engineering A, 2008, 483-484: 336-339. [4]Su H, Toda H, Masunaga R, et al. Influence of hydrogen on strain localization and fracture behavior in AlZnMgCu aluminum alloys[J]. Acta Materialia, 2018, 159: 332-343. [5]褚武扬, 乔利杰. 断裂与环境断裂[M]. 北京: 科学出版社, 2000: 148-150. [6]褚武扬, 高克玮, 刘亚萍, 等. 氢对黄铜脱锌层引起拉应力的影响[J]. 中国有色金属学报, 2002, 12(4): 625-628. Chu Wuyang, Gao Kewei, Liu Yaping, et al. Effect of hydrogen on stress induced by dezincification layer on brass[J]. The China Journal of Nonferrous Metals, 2002, 12(4): 625-628. [7]徐 兵, 宋仁国. 7075铝合金基体粗糙度对微弧氧化陶瓷膜层表面质量的影响[J]. 金属热处理, 2019, 44(3): 37-41. Xu Bing, Song Renguo. Effect of substrate roughness of 7075 aluminum alloy on surface quality of ceramic coatings by micro-arc oxidation[J]. Heat Treatment of Metals, 2019, 44(3): 37-41. [8]苏立武, 葛延峰. 脉冲电流参量对镁合金微弧氧化过程的影响[J]. 金属热处理, 2017, 42(8): 125-130. Su Liwu, Ge Yanfeng. Effect of current pulse parameter on micro-arc oxidation process of magnesium alloys[J]. Heat Treatment of Metals, 2017, 42(8): 125-130. [9]胡海峰, 朱新河. 铝合金微纳米蛇纹石改性微弧氧化陶瓷膜自修复性能[J]. 金属热处理, 2017, 42(9): 168-171. Hu Haifeng, Zhu Xinhe. Self-repairing properties of micro-arc oxidation ceramic layer modified by micro-nano serpentine on aluminum alloy[J]. Heat Treatment of Metals, 2017, 42(9): 168-171. [10]庄俊杰, 张晓燕, 孙 斌, 等. 微弧氧化对7050铝合金腐蚀行为的影响[J]. 工程科学学报, 2017, 39(10): 1532-1539.Zhuang Junjie, Zhang Xiaoyan, Sun Bin, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy[J]. Chinese Journal of Engineering, 2017, 39(10): 1532-1539. [11]祁文娟, 宋仁国, 祁 星, 等. 不同时效状态下7050铝合金氢致开裂行为[J]. 材料热处理学报, 2014, 35(11): 56-62. Qi Wenjuan, Song Renguo, Qi Xing, et al. Hydrogen-induced cracking behavior of 7050 aluminum alloy under various aging states[J]. Transactions of Materials and Heat Treatment, 2014, 35(11): 56-62. [12]祁文娟, 宋仁国. 7050铝合金氢致附加应力与氢脆的研究[J]. 中国有色金属学报, 2015, 25(5): 1185-1192. Qi Wenjuan, Song Renguo. Hydrogen-induced additive stress and hydrogen embrittlement in 7050 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(5): 1185-1192. [13]祁 星, 宋仁国, 祁文娟, 等. 7050铝合金应力腐蚀敏感性和钝化膜引起的膜致应力随电位变化的一致性[J]. 稀有金属材料与工程, 2016, 45(8): 1943-1948. Qi Xing, Song Renguo, Qi Wenjuan, et al. Consistent variation of stress corrosion cracking susceptibility and passive coating-induced stress for 7050 aluminum alloy with polarization potential[J]. Rare Metal Materials and Engineering, 2016, 45(8): 1943-1948. [14]Izumi T, Itoh G. Thermal desorption spectroscopy study on the hydrogen trapping states in a pure aluminum[J]. Materials Transactions, 2011, 52(2): 130-134. [15]Nishimura R, Yoshida T. Stress corrosion cracking of Cu-30%Zn alloy in Mattsson's solutions at pH 7.0 and 10.0 using constant load method-A proposal of SCC mechanism[J]. Corrosion Science, 2008, 50(4): 1205-1213. [16]Zhang C, Su Y J, Qiao L J, et al. Tarnishing coating-induced brittle cracking of brass[J]. Journal of Materials Research, 2009, 24(7): 2409-2415. |