[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [3]吴桂芬, 唐群华, 柯跃前, 等. 淬火温度对 Al0.5CoCrFeNiSi0.2高熵合金组织结构的影响[J]. 材料科学与工程学报, 2012, 30(3): 422-427. Wu Guifen, Tang Qunhua, Ke Yueqian, et al. Effect of quenching temperature on the microstructure of high-entropy Al0.5CoCrFeNiSi0.2 alloy[J]. Journal of Materials Science and Engineering, 2012, 30(3): 422-427. [4]Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification[J]. Intermetallics, 2014, 54: 104-109. [5]Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation[J]. Acta Materialia, 2015, 96: 258-268. [6]Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46: 131-140. [7]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [8]Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227-230. [9]Sun S J, Tian Y Z, Lin H R, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement[J]. Materials Science and Engineering A, 2018, 712: 603-607. [10]He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62: 105-113. [11]Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia, 2014, 81: 428-441. [12]Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755. [13]Wu S W, Wang G, Yi J, et al. Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy[J]. Materials Research Letters, 2017, 5(4): 276-283. [14]Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J]. Materials Today, 2017, 20(6): 323-331. [15]Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501-14505. [16]Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197-7201. [17]Magee A, Ladani L, Topping T D, et al. Effects of tensile test parameters on the mechanical properties of a bimodal Al-Mg alloy[J]. Acta Materialia, 2012, 60(16): 5838-5849. [18]Witkin D, Lee Z, Rodriguez R, et al. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility[J]. Scripta Materialia, 2003, 49(4): 297-302. [19]Azizi-Alizamini H, Militzer M, Poole W J. A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scripta Materialia, 2007, 57(12): 1065-1068. [20]Zhang Z, Vajpai S K, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics[J]. Materials Science and Engineering A, 2014, 598: 106-113. [21]Fan G J, Choo H, Liaw P K, et al. Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution[J]. Acta Materialia, 2006, 54(7): 1759-1766. [22]Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries[J]. Intermetallics, 2014, 54: 39-48. [23]Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2014, 587: 544-552. [24]Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scripta Materialia, 2013, 68(7): 526-529. [25]Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high entropy alloys[J]. Intermetallics, 2012, 26: 44-51. [26]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. [27]唐群华, 程 虎, 戴品强. 轧制及退火后 Al0.3CoCrFeNi 高熵合金的组织和力学性能[J]. 材料热处理学报, 2015, 36(12): 72-77. Tang Qunhua, Cheng Hu, Dai Pinqiang. Microstructure and mechanical properties of Al0.3CoCrFeNi high entropy alloy after rolling and annealing[J]. Transaction of Materials and Heat Treatment, 2015, 36(12): 72-77. [28]Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science, 1995, 39(1/2): 155-157. [29]Mahajan S. Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys[J]. Scripta Materialia, 2013, 68(2): 95-99. [30]崔占全, 王昆林, 吴 润. 金属学与热处理[M]. 北京: 北京大学出版社, 2010: 314-322. [31]Gali A, George E P. Tensile properties of high and medium-entropy alloys[J]. Intermetallics, 2013, 39: 74-78. [32]Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys[J]. Advanced Materials, 2006, 18(17): 2280-2283. [33]余均武, 刘雪峰, 谢建新. 无模拉拔成形连续柱状晶 BFe10-1-1合金管材的残余应力[J]. 塑性工程学报, 2013, 20(1): 11-15. Yu Junwu, Liu Xuefeng, Xie Jianxin. Study of residual stress of a BFe10-1-1 alloy tube with continuous columnar grains after dieless drawing[J]. Journal of Plasticity Engineering, 2013, 20(1): 11-15. [34]Meyers M A, Vöhringer O, Lubarda V A. The onset of twinning in metals: A constitutive description[J]. Acta Materialia, 2001, 49(19): 4025-4039. [35]Lu L, Zhu T, Shen Y, et al. Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper[J]. Acta Materialia, 2009, 57(17): 5165-5173. |