[1]张丽凤. 汽车用6061铝合金热压缩变形行为研究[J]. 塑性工程学报, 2020, 27(11): 174-181. Zhang Lifeng. Study on hot compression deformation behavior of 6061 aluminum alloy for automobile[J]. Journal of Plasticity Engineering, 2020, 27(11): 174-181. [2]Fuertes J P, Luis C J, Luri R, et al. Design, simulation and manufacturing of a connecting rod from ultra-fine grained material and isothermal forging[J]. Journal of Manufacturing Processes, 2016, 21: 56-68. [3]Soheil S. A note on barrel compression test: A method for evaluation of friction[J]. Computational Materials Science, 2010, 49(2): 435-438 . [4]罗子健, 杨 旗, 姬婉华. 考虑变形热效应的本构关系建立方法[J]. 中国有色金属学报, 2000, 10(6): 804-808. Luo Zijian, Yang Qi, Ji Wanhua. New method to establish constitutive relationship considering effect of deformation heating[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 804-808. [5]任永海, 赵 飞, 严 琰, 等. 18Ni马氏体时效钢热变形行为[J]. 兵器材料科学与工程, 2013, 36(1): 114-117. Ren Yonghai, Zhao Fei, Yan Yan, et al. Hot deformation behaviour of 18Ni maraging steel[J]. Ordnance Material Science and Engineering, 2013, 36(1): 114-117. [6]王凌旭, 蒋 欣, 代发明, 等. 18Ni马氏体时效钢高温变形本构关系研究[J]. 热加工工艺, 2016, 45(19): 153-155. Wang Lingxu, Jiang Xin, Dai Faming, et al. Research on high temperature deformation constitutive relation of 18Ni maraging steel[J]. Hot Working Technology, 2016, 45(19): 153-155. [7]仇琍丽, 高文理, 陆 政, 等. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39. Qiu Lili, Gao Wenli, Lu Zheng, et al. Flow behavior and microstructure of 7A85 aluminum alloy during hot compression[J]. Journal of Materials Engineering, 2016, 44(1): 33-39. [8]Puchi-Cabrera E S, Guérin J D, La Barbera-Sosa J G, et al. Friction correction of austenite flow stress curves determined under axisymmetric compression conditions[J]. Experimental Mechanics, 2019(3): 445-458. [9]Roebuck B, Lord J D, Brooks M, et al. Measurement of flow stress in hot axisymmetric compression tests[J]. Materialsat High Temperatures, 2006, 122(23): 59-83. [10]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143. [11]詹亮亮. AF1410钢热变形过程的晶粒演化模型与典型航空锻件数值模拟[D]. 秦皇岛: 燕山大学, 2017. Zhan Liangliang. The grain evolution model during hot deformation process of AF1410 steel and numerical simulation of the typical aerospace forging[D]. Qinghuangdao: Yanshan University, 2017. [12]Li L, Zhou J, Duszczyk J. Determination of a constitutive relationship for AZ31B magnesium and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology, 2006, 172(3): 372-380. [13]Richardson G J, Sellars C M, Tegart W J M G. Recrystallization during creep of nickel[J]. Acta Metallurgica, 1966, 14(10): 1225-1236. [14]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. [15]Prasad Y, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258. [16]曾卫东, 周义刚, 周 军, 等. 加工图理论研究进展[J]. 稀有金属材料与工程, 2006(5): 673-677. Zeng Weidong, Zhou Yigang, Zhou Jun, et al. Recent development of procession map theory[J]. Rare Metal Materials and Engineering, 2006(5): 673-677. [17]黄有林, 王建波, 凌学士, 等. 热加工图理论的研究进展[J]. 材料导报, 2008, 22(S3): 173-176. Huang Youlin, Wang Jianbo, Ling Xueshi, et al. Research development of hot processing map theory[J]. Materials Review, 2008, 22(S3): 173-176. [18]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. [19]Srinivasa N, Prasad Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: A comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51(1): 171-192. |