[1]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. [2]Mirzadeh H. A simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 1-11. [3]Dehghan Manshadi A, Barnett M R, Hodgson P D. Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization[J]. Metallurgical and Materials Transactions A, 2008, 39(6): 1359-1370. [4]Peng Y H, Li D Y, Wang Y C, et al. Numerical study on the low pressure die casting of AZ91D wheel hub[J]. Materials Science Forum, 2005, 488-489: 393-396. [5]Jonas J J, Poliak E I. The critical strain for dynamic recrystallization in rolling mills[J]. Materials Science Forum, 2003, 426-432: 57-66. [6]马立强, 袁向前, 刘振宇, 等. 铌微合金钢动态再结晶的规律[J]. 钢铁研究学报, 2006(9): 47-50. Ma Liqiang, Yuan Xiangqian, Liu Zhenyu, et al. The law of dynamic recrystallization of niobium microalloyed steel[J]. Journal of Iron and Steel Research, 2006(9): 47-50. [7]魏海莲, 刘国权, 肖 翔, 等. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J]. 金属学报, 2013, 49(6): 731-738. Wei Hailian, Liu Guoquan, Xiao Xiang, et al. Apparent and physics-based constitutive analysis of austenitic thermal deformation of 35Mn2 steel[J]. Acta Metallurgica Sinica, 2013, 49(6): 731-738. [8]蔡 薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 147-154. Cai Wei, Gao Pengzhe, Chen Huiming, et al. Hot deformation behavior and hot working diagram of Cu-Cr-Zr-Ti alloy at high temperature[J]. Heat Treatment of Metals, 2019, 44(8): 147-154. [9]梁剑雄, 雍岐龙, 张 良, 等. 1Cr17Ni1双相不锈钢的热变形行为及其热加工图[J]. 钢铁, 2016, 51(9): 82-89. Liang Jianxiong, Yong Qilong, Zhang Liang, et al. Hot deformation behavior and its processing map of 1Cr17Ni1 duplex stainless steel[J]. Iron and Steel, 2016, 51(9): 82-89. [10]Xiao Y H, Guo C, Guo X Y. Constitutive modeling of hot deformation behavior of H62 brass[J]. Structurual Materials Properties Microstructure and Processing, 2011, 528(21): 6510-6518. [11]Churyumov A Y, Khomutov M G, Solonin A N, et al. Hot deformation behaviour and fracture of 10CrMoWNb ferritic-martensitic steel[J]. Materials and Design, 2015, 74: 44-54. [12]Sun C, Liu J, Li R, et al. Constitutive modeling for elevated temperature flow behavior of Incoloy 800H superalloy[J]. Acta Metallurgica Sinica-Chinese Edition, 2011, 47(2): 191-196. [13]陈学文, 杨喜晴, 王继业, 等. X12合金动态再结晶临界应变模型[J]. 材料热处理学报, 2018, 39(10): 99-105. Chen Xuewen, Yang Xiqing, Wang Jiye, et al. Critical strain model of dynamic recrystallization of X12 alloy[J]. Transactions of Materials and Heat Treatment, 2018, 39(10): 99-105. [14]Solhjoo S. Determination of critical strain for initiation of dynamic recrystallization[J]. Materials and Design, 2010, 31(3): 1360-1364. [15]Sellars C M. Computer modelling of hot-working processes[J]. Materials Science and Technology, 1985, 1(4): 325-332. [16]罗 锐, 程晓农, 徐桂芳, 等. 新型Fe-20Cr-30Ni-0.6Nb-2Al-Mo合金的热变形行为及本构模型[J]. 稀有金属, 2017(2): 132-139. Luo Rui, Cheng Xiaonong, Xu Guifang, et al. Hot deformation behavior and constitutive model of new Fe-20Cr-30Ni-0.6Nb-2Al-Mo alloy[J]. Chinese Journal of Rare Metals, 2017(2): 132-139. [17]Gong P, Palmiere E J, Rainforth W M. Characterisation of strain-induced precipitation behaviour in microalloyed steels during thermomechanical controlled processing[J]. Materials Characterization, 2017, 124: 83-89. [18]武绍文, 张彩军, 郑非凡, 等. EH40钢中第二相粒子对奥氏体尺寸的影响[J]. 金属热处理, 2019, 44(7): 88-92. Wu Shaowen, Zhang Caijun, Zhen Feifan, et al. Effect of second phase particles on austenite size in EH40 steel[J]. Heat Treatment of Metals, 2019, 44(7): 88-92. [19]董常福, 袁 清, 徐 光, 等. Nb对热轧低碳贝氏体钢组织与性能的影响[J]. 金属热处理, 2020, 45(6): 197-200. Dong Changfu, Yuan Qing, Xu Guang, et al. Effect of Nb on microstructure and properties of hot rolled low carbon bainite steel[J]. Heat Treatment of Metals, 2020, 45(6): 197-200. |