[1]Wilcock D F, Booser E R. Bearing Design and Application[M]. New York: McGraw-Hill, 1957. [2]Hamrock B J, Anderson W J. Rolllng-element bearings[R]. Ohio: NASA RP-II05, 1983. [3]Bamberger E N, Zaretsky E V, Signer H. Endurance and failure characteristic of main-shaft jet engine bearing at 3×106 DN[J]. Journal of Lubrication Technology, 1976, 98(4): 580-585. [4]William R J, Jr Richard J P. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel[R]. Ohio: NASA TM 73715, 1977. [5]Erwin V Zaretsky. Bearing and gear steels for aerospace applications[R]. NASA TM 102529, 1990. [6]Daniel Girodin. Deep nitrided 32CrMoV13 steel for aerospace bearings applications[J]. NTN Technical Review, 2008, 76: 24-31. [7]Beswick J M, Zhou XiaoBo. Rolling bearing comprising a powder metallurgical component: US, 20040071378[P]. 2004-03-15. [8]Gomes M A, Wronski A S, Wright C S. Fracture behaviour of a highly alloyed high speed steel[J]. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18(1): 1-18. [9]Chin H A, Bursey R W, Ehlert D D, et al. CRONlDUR 30-An advanced nitrogen alloyed stainless steel for advanced corrosion resistant fracture tough cryogenic bearings[C]//Proceeding of NASA Earth to Orbit Propulsion Technology Conference. Huntsville: NASA Marshali Space Flight Center, 1994: 321-328. [10]Hucklenbroich I, Stein G, Chin H, et al. High nitrogen martensitic steel for critical components in aviation[J]. Materials Science Forum, 1999, 318-320: 161-166. [11]Anderson W J, Bamberger E N, Poole W E, et al. STLE life factors for rolling bearings[C]//Society of Tribologists and Lubrication Engineers. Park Ridge, IL: 1992: 71-128. [12]Charles J Kuehmann, Gregory Bolson, John Pwise, et al. Advanced case carburizing secondary hardening steels: US, 20016176946[P]. 2001-01-23. [13]Latrobe Inc. Case carburized stainless steel alloy for high temperature applications: US, 5424028[P]. 1995-06-13. [14]Trivedi H K, Rosado L, Gerardi D T, et al. Fatigue life performance of hybrid angular contact pyrowear 675 bearings[C]//Bearing Steel Technologies: 11th Volume, Progress in Steel Technologies and Bearing Steel Quality Assurance. West Conshohocken, PA: ASTM International, 2017: 275-295. [15]Gloeckner P, Rodway C. The evolution of reliability and efficiency of aerospace bearing systems[J]. Engineering, 2017, 9(11): 962-991. [16]Aerospace design guide for precision metric ball and cylindrical roller bearings[R]. US: Timken Company, 2016. [17]赵振业, 李春志, 李 志, 等. 创新超高强度轴承齿轮钢[C]//中国工程院化工、冶金与材料工程学部第五届学术会议论文集. 北京: 中国工程院, 2009: 517-522. [18]杨卯生, 王 敏, 姚长贵, 等. 一种高强高韧耐蚀高温轴承齿轮钢及制备方法: 中国, 102226254B[P]. 2013-03-20. [19]王 康, 杨卯生, 樊 刚, 等. 16Cr14Co12Mo5 耐热耐蚀轴承钢强韧化机制的研究[J]. 钢铁, 2011, 46(11): 75-79. Wang Kang, Yang Maosheng, Fan Gang, et al. Investigation on mechanism of strength-toughening of heat and corrosion resistant bearing steel 16Cr14Co12Mo5[J]. Iron and Steel, 2011, 46(11): 75-79. [20]冯 浩, 姜周华, 李花兵, 等. 淬火温度对30Cr15Mo1N高氮轴承钢组织和性能的影响[J]. 钢铁, 2017, 52(9): 92-98. Feng Hao, Jiang Zhouhua, Li Huabing, et al. Influence of austenitizing temperature on microstructure and mechanical properties of high nitrogen bearing steel 30Cr15Mo1N[J]. Iron and Steel, 2017, 52(9): 92-98. [21]侯智鹏, 张 姝, 张 鹏, 等. 新型Cr-Co-Mo-Ni合金的高温蠕变损伤[J]. 钢铁研究学报, 2019, 31(7): 684-689. Hou Zhipeng, Zhang Shu, Zhang Peng, et al. High temperature creep damage behavior of a novel Co-Cr-Mo-Ni alloy[J]. Journal of Iron and Steel Research, 2019, 31(7): 684-689. [22]Bohmer H J, Ebert F J, Trojahn W. M50NiL bearing material-heat treatment, material properties and performance in comparison with M50 and RBD[J]. Lubrication Engineering, 1992, 48: 28-35. [23]Bohmer H J. Residual stresses and materials behaviour of M50NiL and RBD[C]//Creative Use of Bearing Steels STP 1195. Pennsylvania, USA: ASTM International, 1993: 34-48. [24]Rescalvo J A, Averbach B L. Fracture and fatigue in M50 and 18-4-1 high-speed steels[J]. Metallurgical Transactions A, 1979, 10(7): 1265-1271. [25]Meetham G W. The Development of Gas Turbine Materials[M]. London: Applied Science Publishers, 1981. [26]Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science, 2012, 57(2): 268-435. [27]Marchand F P. Touchdown bearing development for a magnetic bearing system used in a high temperature gas turbine[C]//ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. 1997, DOI: 10.1115197-GT-104. [28]Kern C P, Wright J A, Sebastian J T, et al. Manufacturing and processing of a new class of vacuum carburized gear steels with very high hardenability[R]. American Gear Manufacturers Association, 2011. [29]Burrier H I, Tomasello C M, Balliett S A. Development of CSS-42LTM, A high performance carburizing stainless steel for high temperature aerospace applications[C]// Bearing Steels: Into the 21st Century. Pennsylvania, USA: American Society for Testing and Materials, 1998: 316180. [30]Tomasello C M, Burrrier H I, Knepper R A, et al. Progress in the Evaluation of CSS-42L: A High Performance Bearing Alloy[M]. West Conshohocken: ASTM International, 2002. [31]Chevulier J L, Dietrich M W, Zuretsky E V. Short-term hot hardness characteristics of rolling-element steels[R]. Cleveland, Ohio: Lewis Research Center and U. S. Army Air Mobility R&D Laboratory, 1972. [32]Chevulier J L, Dietrich M W, Zuretsky E V. Hot hardness characteristics of ausformed AISI M-50, Matrix 2, WD-65, modified AISI 440-C, and Super Nitralloy[R]. Cleveland, Ohio: Lewis Research Center and U. S. Army Air Mobility R&D Laboratory, 1973. [33]Anderson N E. Long-term hot-hardness characteristics of five through-hardened bearing steels[R]. Cleveland, Ohio: Propulsion Laboratory, AVRADCOM Research and Technology Laboratories Lewis Research Center, 1978. [34]Michael A K, Ghatu S, Nagaraj K A. Microstructure-property relationships in M50-NiL and P675 case-hardened bearing steels[J]. Tribology Transactions, 2013, 56(6): 1046-1059. [35]Frederick J O, Daniel H H. Advancements in precision carburizing of new aerospace and motorsports materials[J]. Heat Treating Progress, 2007, 7(5): 35-40. [36]Hitesh K T, Frederick J O. Carbo-nitriding process for martensitic stainless steel and stainless steel article having improved corrosion resistance: US, 20180320262[P]. 2018-11-08. [37]Zaretsky E V, Branzai E V. Rolling bearing service life based on probable cause for removal—A tutorial[J]. Power Transmission Engineering, 2017, 11(8): 40-51. [38]Kvryan A. The influence of heat treatment on corrosion behavior of martensitic stainless steel UNS 42670[D]. Boise: Boise State University, 2019. [39]Burrier H I, Lii J M, Milam D L, et al. High performance carburizing stainless steel for high temperature use: US, 2001008118[P]. 2001-09-20. [40]Richard J P. Corrosion of simulated bearing components of three bearing steels in the presence of chloride-contaminated lubricant[R]. Cleveland, Ohio: Lewis Research Center, 1983. [41]Errichello R, Budny R, Eckert R. Investigations of bearing failures associated with white etching areas (WEAs) in wind turbine gearboxes[J]. Tribology Transactions, 2013, 56(6): 1069-1076. [42]Blass T, Trojahn W, Merk D. Influence of material and heat treatment on the formation of WECs on test Rig FE8[C]// Bearing Steel Technologies: 11th Volume, Advances in Steel Technologies for Rolling Bearings. West Conshohocken, USA: ASTM International, 2017: 129-150. [43]Richard J P, Robert S H. Effect of double vacuum melting and retained austenite on rolling-element fatigue life of AMS 5749 bearing steel[R]. Cleveland, Ohio: Lewis Research Center, 1977. [44]Aerospace design guide for precision metric ball and cylindrical roller bearings[R]. USA: Timken Company, 2004. [45]Yamada H, Uyama H. The effects of alloy elements and heat treatments on white structure flaking in rolling bearings[R]. Dallas: STLE 2015, 2015. [46]Lou Bingzhe, Averbach B L. The effects of heat treatment on fracture toughness and fatigue crack growth Rates in 440C and BG42 steels[J]. Metallurgical Transactions A, 1983, 14(9): 1899-1906. [47]Kirsch M, Trivedi H. Microstructural changes in aerospace bearing steels under accelerated rolling contact fatigue life testing[C]//Bearing Steel Technologies: 11th Volume, Advances in Steel Technologies for Rolling Bearings. West Conshohocken, USA: ASTM International, 2017: 92-107. [48]Scouting high performance steels for bearing and gear[R]. Germany: FAG Aerospace Co., 2017. [49]Roller and Ball Bearings Design Guide[R]. USA: New Hampshire Ball Bearings, Inc. 2010. [50]Obrien M J, Presser N, Robinson E Y. Failure analysis of three Si3N4 balls used in hybrid bearings[R]. Los Angeles: Space and Missile Systems Center, 2003. [51]Oswald F B, Zaretsky E V. Relation between residual and hoop stresses and rolling bearing fatigue life[R]. Cleveland, Ohio: Glenn Research Center, 2015. [52]Trivedi H K, Otto F J, Piazza T W. Carbo-nitriding process for martensitic stainless steel and stainless steel article having improved corrosion resistance: US, 10053763[P]. 2018-08-21. [53]Branch N A, Arakere N K, Forster N. Critical stresses and strains at the spall edge of a case hardened bearing due to ball impact[J]. International Journal of Fatigue, 2013, 123(47): 268-278. [54]Trivedi H K, Forster N H, Rosado L. Rolling contact fatigue evaluation of advanced bearing steels with and without the oil anti-wear additive tricresyl phosphate[J]. Tribology Letters, 2011, 41(3): 597-605. |