[1]裴新军, 程 格, 潘新宇, 等. 刀剪用马氏体不锈钢的现状和发展[J]. 热处理, 2020, 35(4): 1-6. Pei Xinjun, Cheng Ge, Pan Xinyu, et al. Current situation and development of martensitic stianless steel for knifesand scissors[J]. Heat Treatment, 2020, 35(4): 1-6. [2]宋自力, 杜晓东, 陈翌庆, 等. 7Cr17Mo马氏体不锈钢组织和冲击韧性[J]. 材料热处理学报, 2011, 32(5): 95-99. Song Zili, Du Xiaodong, Chen Yiqing, et al. Microstructure and impact toughness of 7Cr17Mo martensitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(5): 95-99. [3]Choi Y S, Kim J G, Park Y S. Austenitizing treatment influence on the electrochemical corrosion behavior of 0.3C-14Cr-3Mo martensitic stainless steel[J]. Materials Letters, 2007, 61(1): 244-247. [4]Deng B, Yang D P, Wang G D, et al. Effects of austenitizing temperature on tensile and impact properties of a martensitic stainless steel containing metastable retained austenite[J]. Materials, 2021, 14(4): 1000. [5]Bajguirani H. The effect of ageing upon the microstructure and mechanical properties of type 15-5PH stainless steel[J]. Materials Science and Engineering A, 2002, 338(1-2): 142-159. [6]Akhtar F, Lian Y D, Islam S H, et al. A new kind of age hardenable martensitic stainless steel with high strength and toughness[J]. Ironmaking and Steelmaking, 2007, 34(4): 285-289. [7]刘振宝, 梁剑雄, 苏 杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557. Liu Zhenbao, Liang Jianxiong, Su Jie, et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 549-557. [8]Tobata J, Ngo-Huynh K L, Nakada N, et al. Role of silicon in quenching and partitioning treatment of low-carbon martensitic stainless steel[J]. Transactions of the Iron and Steel Institute of Japan, 2012, 52(7): 1377-1382. [9]Yuan L, Ponge D, Wittig J, et al. Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel[J]. Acta Materialia, 2012, 60(6/7): 2790-2804. [10]Hidalgo J, Findley K O, Santofimia M J. Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering[J]. Materials Science and Engineering A, 2017, 690: 337-347. [11]Minemura T, Inoue A, Masumoto T. Metastable austenite phase in rapidly quenched Fe-Cr-C alloys[J]. Transactions of the Iron and Steel Institute of Japan, 1981, 21(9): 649-655. [12]Mola J, Cooman B. Quenching and partitioning (Q&P) processing of martensitic stainless steels[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 946-967. [13]Lemblé P, Pineau A, Castagne J L, et al. Temper embrittlement in 12%Cr martensitic steel[J]. Metal Science, 2013, 13(8): 496-502. [14]Moura L B, Abreu H, Araújo W S, et al. Embrittlement and aging at 475 ℃ in an experimental superferritic stainless steel with high molybdenum content[J]. Corrosion Science, 2018, 137: 76-82. [15]Olefjord I. Temper embrittlement[J]. International Materials Reviews, 1978, 23(1): 149-163. [16]Yoo C H, Lee H M, Chan J W, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel[J]. Metallurgical and Materials Transactions A, 1996, 27(11): 3466-3472. [17]Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metallurgical Transactions A, 1993, 24(9): 1943-1955. [18]Shi X, Zeng W, Zhao Q, et al. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 ℃[J]. Journal of Alloys and Compounds, 2016, 679: 184-190. [19]Yang J, Feng H, Guo Z, et al. Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure[J]. Materials Science and Engineering A, 2016, 665: 76-85. [20]Fan Y H, Zhang B, Yi H L, et al. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel[J]. Acta Materialia, 2017, 139: 188-195. |