[1]符栋良, 任发才. 电站锅炉用改进型9Cr-1Mo耐热钢高温蠕变行为研究[J]. 锅炉技术, 2018, 49(6): 59-62. Fu Dongliang, Ren Facai. Investigation on creep behavior of modified 9Cr-1Mo heat-resistant steel used for power plant boiler at elevated temperatures[J]. Boiler Technology, 2018, 49(6): 59-62. [2]黄格省, 李振宇, 王建明. 我国现代煤化工产业发展现状及对石油化工产业的影响[J]. 化工进展, 2015, 34(2): 295-302. Huang Gesheng, Li Zhenyu, Wang Jianming. Development status of coal chemical industry in China and its influence on petrochemical ndustry[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 295-302. [3]王兆民, 王 硕, 申 雷, 等. 22Cr-25Ni奥氏体耐热钢高温时效的组织及性能[J]. 金属热处理, 2020, 45(3): 46-49. Wang Zhaomin, Wang Shuo, Shen Lei, et al. Mechanical and properties of austenitic heat resistant steel 22Cr-25Ni after high temperature aging[J]. Heat Treatment of Metals, 2020, 45(3): 46-49. [4]吕 鹏, 陈亚楠, 关庆丰, 等. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117. Lü Peng, Chen Ya'nan, Guan Qingfeng, et al. The high-temperature deformation behavior of novel 11Cr12Ni3Mo2VN heat resistant steel for ultra-sup ercritical units[J]. Materials Review, 2020, 34(4): 4113-4117. [5]宋 畅, 吕俊复, 杨海瑞, 等. 超临界及超超临界循环流化床锅炉技术研究与应用[J]. 中国电机工程学报, 2018, 38(2): 338-347. Song Chang, Lü Junfu, Yang Hairui, et al. Research and application of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J]. Proceedings of the CSEE, 2018, 38(2): 338-347. [6]Ren Facai, Wang He, Tang Xiaoying, et al. Creep rupture behavior and microstructural evolution of modified 9Cr-1Mo heat-resistant steel[J]. Journal of Iron and Steel Research International, 2018, 25(12): 1303-1310. [7]Dudko V, Belyakov A, Molodov D, et al. Microstructure evolution and pinning of boundaries by precipitates in a 9 pct Cr heat resistant steel during creep[J]. Metallurgical and Materials Transactions A, 2011, 44(S1): 162-172. [8]辛 甜, 刘新宝, 朱 麟, 等. 磁性测量的高温蠕变状态参数化表征[J]. 西北大学学报(自然科学版), 2016, 46(6): 852-856. Xin Tian, Liu Xinbao, Zhu Lin, et al. Magnetic characterization of creep at elevated temperature[J]. Journal of Northwest University(Natural Science Edition), 2016, 46(6): 852-856. [9]郝巧娥. P91钢高温蠕变行为及电磁超声谐振表征研究[D]. 西安: 西北大学, 2016. Hao Qiao'e. The study of creep bahavior at elevated temperature and electromagnetic acoustic resonance charaterization of P91 steel[D]. Xi'an: Northwest University, 2016. [10]毕 瑶, 刘新宝, 朱 麟, 等. 高温蠕变过程中高铬耐热钢的电化学极化行为[J]. 金属热处理, 2019, 44(11): 213-218. Bi Yao, Liu Xinbao, Zhu Lin, et al. Electrochemical polarization behavior of high chromium heat-resistant steel during high-temperature creep[J]. Heat Treatment of Metals, 2019, 44(11): 213-218. [11]Muvdi B B, Giemza C J. Primary creep in aircraft design[R]. Society of Automotive Engineers International, 1958. [12]王佰智, 温志勋, 刘大顺, 等. 镍基单晶高温合金沉淀相尺度效应研究[J]. 稀有金属材料与工程, 2015, 352(11): 151-154. Wang Baizhi, Wen Zhixun, Liu Dashun, et al. Influence of precipitate size on the strength of nickel-base single crystal superalloys[J]. Rare Metal Materials and Engineering, 2015, 352(11): 151-154. [13]Martin J L, Piccolo B L, Kruml T, et al. Characterization of thermally activated dislocation mechanisms using transient tests[J]. Materials Science and Engineering A, 2002, 322(1/2): 118-125. [14]Ahlquist C N, Gascaneri R, Nix W D. A phenomenological theory of steady state creep based on average internal and effective stresses[J]. Acta Metallurgica, 1970, 18(6): 663-671. [15]Chang Y J, Nam S W, Ginsztler J. Activation processes of stress relaxation during hold time in 1Cr-Mo-V steel[J]. Materials Science and Engineering A, 1999, 264(1/2): 188-193. [16]Esposito L, Bonora N. A primary creep model for class M materials[J]. Materials Science and Engineering: A, 2011, 528(16/17): 5496-5501. [17]刘剑秋, 刘新宝, 朱 麟, 等. 9Cr-1Mo耐热钢蠕变过程中可动位错演化行为表征[J]. 西北大学学报(自然科学版), 2018, 48(1): 66-70. Liu Jianqiu, Liu Xinbao, Zhu Lin, et al. Characterization of mobile dislocation evolution in 9Cr-1Mo heat-resistant steel during elevated temperature creep[J]. Journal of Northwest University(Natural Science Edition), 2018, 48(1): 66-70. [18]朱 麟, 刘新宝, 辛 甜, 等. 基于微观组织演化的P91钢长时蠕变寿命预测[J]. 材料导报, 2017, 31(10): 137-140, 145. Zhu Lin, Liu Xinbao, Xin Tian, et al. Prediction oflong-term creep rupture time of P91 steel based on microstructure evolution[J]. Materials Review, 2017, 31(10): 137-140, 145. [19]程晓农, 王 铖, 张 楠, 等. 新型Cr18Ni9NbTiN奥氏体不锈钢的高温蠕变行为[J]. 金属热处理, 2016, 41(3): 114-118. Cheng Xiaonong, Wang Cheng, Zhang Nan, et al. High temperature creep behavior of a novel Cr18Ni9NbTiN austenitic stainless steel[J]. Heat Treatment of Metals, 2016, 41(3): 114-118. [20]Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models[J]. Acta Metallurgica, 1984, 32(1): 57-70. [21]Hayes R W. Minimum strain rate and primary transient creep analysis of a fine structure orthorhombic titanium aluminide[J]. Scripta Materialia, 1996, 34(6): 1005-1012. [22]Malakondaiah G, Prasad N, Sundararajan G, et al. An analysis of the transient stage in low stress viscous creep[J]. Acta Metallurgica, 1988, 36(8): 2167-2181. [23]Gollapudi S, Satyanarayana D V V, Phaniraj C, et al. Transient creep in titanium alloys: Effect of stress, temperature and trace element concentration[J]. Materials Science and Engineering: A, 2012, 556: 510-518. [24]Burton B. Diffusional creep of polycrystalline materials[J]. Ceramurgia International, 1977, 3(3): 128-129. [25]Tang F, Nakazawa S, Hagiwara M. Transient creep of Ti-Al-Nb alloys[J]. Materials Science and Engineering: A, 2002, 325(1/2): 194-201. |