[1] Li Zhifeng, Cao Guangming, He Yongquan, et al. Effect of chromium and water vapor of low carbon steel on oxidation behavior at 1050 ℃[J]. Steel Research (International), 2016, 87(11): 1469-1477. [2] 孙 彬. 热轧低碳钢氧化铁皮控制技术的研究与应用[D]. 沈阳: 东北大学, 2011. Sun Bin. Research and application of control technology of hot rolled low carbon steel scale[D]. Shenyang: Northeast University, 2011. [3] Chen R Y, Yuen W Y D. A study of the structure of hot-rolled steel strip by simulated coiling and cooling[J]. Oxidation of Metals, 2000, 53(5): 539-560. [4] Chen R Y, Yuen W Y D. Review of the high-temperature oxidation of iron and carbon steels in air oroxygen[J]. Oxidation of Metals, 2003, 59(5): 433-468. [5] Chen R Y, Yuen W Y D. Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms[J]. Oxidation of Metals, 2001, 56(1/2): 89-118. [6] 王 皓, 孙 彬, 王建明, 等. Fe-1Cr钢的高温氧化动力学研究[J]. 热加工工艺, 2016, 45(18): 46-48, 52. Wang Hao, Sun Bin, Wang Jianming, et al. High-temperature oxidation kinetics of Fe-1Cr steel[J]. Hot Working Technology, 2016, 45(18): 46-48, 52. [7] 张都清, 徐敬军, 赵国群, 等. 9Cr-1Mo钢在含水蒸汽气氛中的氧化行为[J]. 材料研究学报, 2008, 22(6): 599-605. Zhang Duqing, Xu Jingjun, Zhao Guoqun, et al. Oxidation characteristic of ferritic-martensitic steel T91 in water-vapor atmosphere[J]. Journal of Materials Research, 2008, 22(6): 599-605. [8] Sabioni A C S, Souza J N V, Ji V, et al. Study of ion diffusion films grown on a model Fe-15%Cr alloy[J]. Solid State Ionics, 2015, 276: 1-8. [9] 刘晓凤, 孙 彬, 王建明, 等. 热轧时钢铁材料高温氧化铁皮的研究进展[J]. 热加工工艺, 2018, 47(1): 10-14, 19. Liu Xiaofeng, Sun Bin, Wang Jianming, et al. Research progress of high temperature iron oxide scale of steel and iron material during hot rolling[J]. Hot Working Technology, 2018, 47(1): 10-14, 19. [10] 王建明, 高 炜, 孙 彬. Fe-Cr合金钢在1000 ℃空气条件下的氧化行为[J]. 沈阳大学学报(自然科学版), 2018, 30(4): 259-262. Wang Jianming, Gao Wei, Sun Bin. Oxidation behavior of Fe-Cr alloy steel at 1000 ℃ air[J]. Journal of Shenyang University: Nature Science, 2018, 30(4): 259-262. [11] 刘振宇, 李志峰. 新一代热轧板带材表面氧化铁皮控制技术的现状与进展[J]. 轧钢, 2020, 37(1): 1-6, 23. Liu Zhenyu, Li Zhifeng. State of the art development on technology for new generation to controlling oxide scale of hot rolled plate and strip[J]. Steel Rolling, 2020, 37(1): 1-6, 23. [12] 陈安忠, 任娟红, 李照国, 等. 低铬和中铬含钛铁素体不锈钢高温氧化行为[J]. 中国冶金, 2018, 28(1): 27-31. Chen Anzhong, Ren Juanhong, Li Zhaoguo, et al. High temperature oxidation behavior of low chromium and medium chromium titanium ferritic stainless steel[J]. China Metallurgy, 2018, 28(1): 27-31. [13] Yang C W, Kim J H, Triambulo R E, et al. The mechanical property of the oxide scale on Fe-Cr alloy steels[J]. Journal of Alloys and Compounds, 2013, 549: 6-10. [14] 彭建国, 李谋成, 骆素珍. B443NT铁素体不锈钢高温氧化行为研究[J]. 宝钢技术, 2013(5): 22-25, 31. Peng Jianguo, Li Moucheng, Luo Suzhen. Oxidation characteristic of B443NT at high temperature[J]. Baosteel Technology, 2013(5): 22-25, 31. [15] 李志峰. 热轧钢材氧化铁皮演变机理与免酸洗技术开发[D]. 沈阳: 东北大学, 2018: 23-41. Li Zhifeng. Evolution mechanism of oxide scale of hot rolled steel and development of acid-free picking technology[D]. Shenyang: Northeast University, 2018: 23-41. [16] 王国栋. 中国钢铁轧制技术的进步与发展趋势[J]. 钢铁, 2014, 49(7): 23-29. Wang Guodong. Progress and development trend of Chinese steel rolling technology[J]. Iron and steel, 2014, 49(7): 23-29. [17] 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001: 140-155. [18] Birks N, Meier G H, Pettit F S. 金属高温氧化导论[M]. 辛 丽, 王 文, 译. 北京: 高等教育出版社, 2010: 123-138. [19] 曹光明, 刘小江, 薛军安, 等. 热轧带钢氧化铁皮的酸洗行为[J]. 钢铁研究学报, 2012, 24(6): 36-41. Cao Guangming, Liu Xiaojiang, Xue Jun'an, et al. Pickling mechanisms of hot-rolled steel strip[J]. Journal of Iron and Steel Research, 2012, 24(6): 36-41. [20] 何永全. 热轧带钢免酸洗还原热镀锌工艺研究与应用[D]. 沈阳: 东北大学, 2015: 43-46. He Yongquan. Research and application of hot dip galvanizing of hot-rolled steel strip without pickling[D]. Shenyang: Northeast University, 2015: 43-46. [21] Ellingham H J T. Reducibility of oxides and sulphides in metallurgical processes[J]. Journal of the Society of Chemical Industry, 1944, 63(5): 125-133. [22] Brady M P, Wright I G, Glesson B. Alloy design strategies for promoting protective oxide-scale formation[J]. JOM, 2000, 52(1): 16-21. [23] Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Applied Surface Science, 2016, 379(13): 39-46. |