[1]晁代义, 张 倩, 孙有政, 等. 超高强7055铝合金铸锭均匀化工艺优化[J]. 金属热处理, 2020, 45(12): 87-91. Chao Daiyi, Zhang Qian, Sun Youzheng, et al. Optimization of homogenization process of ultra-high strength 7055 aluminum alloy ingots[J]. Heat Treatment of Metals, 2020, 45(12): 87-91. [2]陈东高, 刘金合, 陈东亮, 等. 7A52厚板铝合金搅拌摩擦焊接头疏松缺陷研究[J]. 兵器材料科学与工程, 2016, 39(6): 88-91. Chen Donggao, Liu Jinhe, Chen Dongliang, et al. Loose defects of welded joint of 7A52 aluminum alloy thick plate by friction stir welding[J]. Ordnance Material Science and Engineering, 2016, 39(6): 88-91. [3]Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19): 5775-5799. [4]Gao Q W, Shu F Y, He P, et al. Microstructure and impact mechanical properties of multi-layer and multi-pass TIG welded joints of Al-Zn-Mg alloy plates[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(12): 2496-2505. [5]Zhang L, Zhong H, Li S, et al. Microstructure, mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061-T6 aluminum alloy[J]. International Journal of Fatigue, 2020, 135: 105556. [6]Li J N, Su M L, Qi W J, et al. Mechanical property and characterization of 7A04-T6 aluminum alloys bonded by friction stir welding[J]. Journal of Manufacturing Processes, 2020, 52: 263-269. [7]Zeng X H, Xue P, Wu L H, et al. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions[J]. Journal of Materials Science and Technology, 2019, 35(6): 972-981. [8]Riahi M, Nazari H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation[J]. The International Journal of Advanced Manufacturing Technology, 2010, 55(1/4): 143-152. [9]Zhang X X, Xiao B L, Ma Z Y. A transient thermal model for friction stir weld. Part I: The model[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3218-3228. [10]Zhao Y X, Yang Z Y, Domblesky J P, et al. Investigation of through thickness microstructure and mechanical properties in friction stir welded 7N01 aluminum alloy plate[J]. Materials Science and Engineering A, 2019, 760: 316-327. [11]Mao Y Q, Ke L M, Chen Y H, et al. Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints[J]. Journal of Materials Science and Technology, 2018, 34(1): 228-236. [12]Xu W F, Luo Y X, Fu M W. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy[J]. Materials Characterization, 2018, 138: 48-55. [13]Mao Y Q, Liming Ke L M, Liu F C, et al. Investigations on temperature distribution, microstructure evolution, and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1): 141-154. [14]Dos Santos J F, Staron P, Fischer T, et al. Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation[J]. Acta Materialia, 2018, 148: 163-172. [15]Chemingui M, Ameur R, Optasanu V, et al. DSC analysis of phase transformations during precipitation hardening in Al-Zn-Mg alloy (7020)[J]. Journal of Thermal Analysis and Calorimetry, 2018, 136(5): 1887-1894. [16]Zhu R, Gong W B, Cui H. Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(1/2): 331-343. [17]Xu W, Liu J, Luan G, et al. Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints[J]. Materialsand Design, 2009, 30(6): 1886-1893. [18]Du C C, Pan Q H, Chen S J, et al. Effect of rolling on the microstructure and mechanical properties of 6061-T6 DS-FSW plate[J]. Materials Science and Engineering A, 2020, 772: 138692. [19]Lin H Q, Wu Y L, Liu S D, et al. Effect of cooling conditions on microstructure and mechanical properties of friction stir welded 7055 aluminium alloy joints[J]. Materials Characterization, 2018, 141: 74-85. [20]Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51(3): 713-729. [21]Peng P, Wang K S, Wang W, et al. Relationship between microstructure and mechanical properties of friction stir processed AISI 316L steel produced by selective laser melting[J]. Materials Characterization, 2020, 163: 110283. [22]Liu X C, Sun Y F, Nagira T, et al. Investigation of temperature dependent microstructure evolution of pure iron during friction stir welding using liquid CO2 rapid cooling[J]. Materials Characterization, 2018, 137: 24-38. [23]Mcqueen H J, Knustad O, Ryum N, et al. Microstructural evolution in Al deformed to strains of 60 at 400 ℃[J]. Scripta Metallurgica, 1985, 19(1): 73-78. [24]Zhao H, Chen Y, Gault B, et al. (Al, Zn)3Zr dispersoids assisted η′ precipitation in a model Al-Zn-Mg-Cu-Zr alloy[J]. Materialia, 2020, 10: 100641. |