[1]李 龙, 曾祥勇, 陈 鑫, 等. 热处理对冷轧4A60铝/08Al钢复合带材组织及力学性能的影响[J]. 金属热处理, 2015, 40(7): 28-32. Li Long, Zeng Xiangyong, Chen Xin, et al. Influence of heat treatment on microstructure and mechanical properties of 4A60 Al/08Al steel clad strip by cold roll bonding[J]. Heat Treatment of Metals, 2015, 40(7): 28-32. [2]Zhao Junren, Hung Feiyi, Chen Bojou. Effects of heat treatment on a novel continuous casting direct rolling 6056 aluminum alloy: Cold rolling characteristics and tensile fracture properties[J]. Journal of Materials Research and Technology, 2021, 11: 535-547. [3]Xie Peng, Chen Songyi, Chen Kanghua, et al. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment[J]. Corrosion Science, 2019, 161: 108184. [4]张超纲, 张文良, 王占军, 等. 射流式加热技术及其在铝合金加热炉上的应用[J]. 金属热处理, 2018, 43(2): 225-228. Zhang Chaogang, Zhang Wenliang, Wang Zhanjun, et al. Jet heating technology and its application in heating furnace for aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(2): 225-228. [5]李家栋, 刘 静, 高冠军, 等. 铝合金薄板强风气垫射流加热过程的对流换热系数研究[J]. 轻合金加工技术, 2017, 45(8): 30-34. Li Jiadong, Liu Jing, Gao Guanjun, et al. Convective heat transfer coefficient of the aluminum alloy sheet in the air cushion jet heating process[J]. Light Alloy Fabrication Technology, 2017, 45(8): 30-34. [6]陈平安, 戴方钦. 带钢射流冷却实验研究[C]//第十届全国能源与热工学术年会论文集. 杭州, 2019: 251-256. Chen Ping'an, Dai Fangqin. Experimental study on strip steel jet cooling[C]//Proceedings of the 10th National Conference on Energy and Thermal Engineering. Hangzhou, 2019: 251-256. [7]Zhou Jiemin, Fu Yifeng, Tu Juan, et al. Study on compulsive cooling of straight impinging jet array and swirling jet impingement[C]//International Conference on Electronic Materials and Packaging. IEEE. 2006: 1-6. [8]Geers L, Tummers M J, Bueninck T J, et al. Heat transfer correlation for hexagonal and in-line arrays of impinging jets[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5389-5399. [9]Terekhov V I, Kalinina S V, Sharov K A. Convective heat transfer at an annular jet impingement on a flat blockage[J]. High Temperature, 2018, 56(2): 217-222. [10]Burak M, Orhan A. Experimental investigation of coaxial impinging air jets[J]. Applied Thermal Engineering, 2018, 124: 517-532. [11]Alekseenko S V, Bilsky A V, Dulin V M, et al. Experimental study of an impinging jet with different swirl rates[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1340-1359. [12]Nuntadusit C, Wae-Hayee M, Bunyajitradulya A, et al. Visualization of flow and heat transfer characteristics for swirling impinging jet[J]. International Communications in Heat and Mass Transfer, 2012, 39(5): 640-648. [13]Rene Prieler, Bernhard Mayr, Martin Demuth, et al. Prediction of the heating characteristic of billets in a walking hearth type reheating furnace using CFD[J]. International Journal of Heat and Mass Transfer, 2016, 92: 675-688. [14]Mayr B, Prieler R, Demuth M, et al. CFD analysis of a pusher type reheating furnace and the billet heating characteristic[J]. Applied Thermal Engineering, 2017, 115: 986-994. [15]齐凤升, 王子松, 李宝宽. 基于加热炉多场耦合传热的板坯加热均匀性[J]. 东北大学学报(自然科学版), 2019, 40(10): 1413-1418. Qi Fengsheng, Wang Zisong, Li Baokuan. Slab heating uniformity based on multi-field coupling heat transfer in reheating furnace[J]. Journal of Northeastern University (Natural Science), 2019, 40(10): 1413-1418. [16]杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 277-280. Yang Shiming, Tao Wenquan. Heat Transfer[M]. 4th edition. Beijing: Higher Education Press, 2006: 277-280. [17]过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004: 80-100. |