[1]Zuo Jinrong, Hou Longgang, Shu Xuedao, et al. Investigation of deformation induced precipitation and the related microstructure evolution of Al-Zn-Mg-Cu alloy[J]. Materials Research Express, 2020, 7(10): 106529. [2]Adrien J, Maire E, Estevez R, et al. Influence of the thermomechanical treatment on the microplastic behaviour of a wrought AlZnMgCu alloy[J]. Acta Materialia, 2004, 52(6): 1653-1661. [3]Duchaussoy A, Sauvage X, Deschamps A, et al. Complex interactions between precipitation, grain growth and recrystallization in a severely deformed Al-Zn-Mg-Cu alloy and consequences on the mechanical behavior[J]. Materialia, 2021, 15: 101028. [4]Wang T, Huang Y, Yang L, et al. Microstructure and mechanical properties of 7055 Al alloy prepared under different sintering conditions using powder by-products[J]. Materials Science and Engineering A, 2020, 805: 140562. [5]Yu H, Wang M, Sheng X, et al. Microstructure and tensile properties of large-size 7055 aluminum billets fabricated by spray forming rapid solidification technology[J]. Journal of Alloys and Compounds, 2013, 578: 208-214. [6]Zhao L, Xin Y, Wu Y, et al. The texture dependence of strength in slip and twinning predominant deformations of Mg-3Al-1Zn alloy[J]. Materials Science and Engineering A, 2018, 717: 34-40. [7]Zhang P, Wang Y. Effects of heat treatment on the nanoscale precipitation behavior of 7055 aluminum alloy under dynamic shock[J]. Vacuum, 2018, 152: 150-155. [8]Li Y, Zhang Y, Han S, et al. Research on the effect of aging time on the microstructure of 7055 aluminum alloy[J]. Vacuum, 2019, 171: 108944. [9]王贵会, 喷射成形7055铝合金应力腐蚀与电化学腐蚀性能研究[D]. 镇江: 江苏科技大学, 2012. [10]甘卫平, 范洪涛, 许可勤, 等. Al-Zn-Mg-Cu系高强铝合金研究进展[J]. 铝加工, 2003, 3: 6-12. Gan Weiping, Fan Hongtao, Xu Keqin, et al. Study progress of Al-Zn-Mg-Cu series high-strength aluminum alloys[J]. Aluminium Fabrication, 2003, 3: 6-12. [11]She H, Shu D, Dong A, et al. Relationship of particle stimulated nucleation, recrystallization and mechanical properties responding to Fe and Si contents in hot-extruded 7055 aluminum alloys[J]. Journal of Materials Science and Technology, 2019, 35(11): 2570-2581. [12]Liu S D, Wang S L, Ye L Y, et al. Flow behavior and microstructure evolution of 7055 aluminum alloy impacted at high strain rates[J]. Materials Science and Engineering A, 2016, 677: 203-210. [13]Khan M A, Wang Y, Afifi M A, et al. Microstructure and mechanical properties of an Al-Zn-Cu-Mg alloy processed by hot forming processes followed by heat treatments[J]. Materials Characterization, 2019, 157: 109901. [14]陈 亮, 陈 松, 冒爱荣. 铝合金阳极氧化工艺条件的优化[J]. 广州化工, 2015, 43(23): 128-129. Chen Liang, Chen Song, Mao Airong. Optimization of process conditions of aluminum alloy anodic oxidation[J]. Guangzhou Chemical Industry, 2015, 43(23): 128-129. [15]Ji M, Li W, Liu H C, et al. Effect of titanium sol on sulfuric-citric acids anodizing of 7150 aluminum alloy[J]. Surfaces and Interfaces, 2020, 19: 100479. [16]Machado T V, Dick P A, Knrnschild G H, et al. The effect of different carboxylic acids on the sulfuric acid anodizing of AA2024[J]. Surface and Coatings Technology, 2019, 383: 125283. [17]Ding Z V. Mechanistic study of thin film sulfuric acid anodizing rate difference between Al2024 T3 and Al6061 T6[J]. Surface and Coatings Technology, 2019, 357: 280-288. |