[1]Kohar C P, Zhumagulov A, Brahme A, et al. Development of high crush efficient, extrudable aluminium front rails for vehicle lightweighting[J]. International Journal of Impact Engineering, 2016, 95: 17-34. [2]Sun X, Meng F, Liu J, et al. Life cycle energy use and greenhouse gas emission of lightweight vehicle-A body-in-white design[J]. Journal of Cleaner Production, 2019, 220: 1-8. [3]杨正斌, 李 艳, 黄喆辉, 等. 冷轧变形量对Al-Mg-Si合金织构的影响[J]. 金属热处理, 2020, 45(3): 122-127. Yang Zhengbin, Li Yan, Huang Zhehui, et al. Effect of cold rolling deformation on texture of Al-Mg-Si aluminum alloy[J]. Heat Treatment of Metals, 2020, 45(3): 122-127. [4]Verma S, Misra J P. Study on temperature distribution during friction stir welding of 6082 aluminum alloy[J]. Materials Today: Proceedings, 2017, 4(2): 1350-1356. [5]Kumar N, Rao P N, Jayaganthan R, et al. Effect of cryorolling and annealing on recovery, recrystallisation, grain growth and their influence on mechanical and corrosion behaviour of 6082 Al alloy[J]. Materials Chemistry and Physics, 2015, 165: 177-187. [6]Bayat N, Carlberg T, Cieslar M. In-situ study of phase transformations during homogenization of 6005 and 6082 Al alloys[J]. Journal of Alloys and Compounds, 2017, 725: 504-509. [7]Shang B C, Yin Z M, Wang G, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy[J]. Materials and Design, 2011, 32(7): 3818-3822. [8]Kai X, Chen C, Sun X, et al. Hot deformation behavior and optimization of processing parameters of a typical high-strength Al-Mg-Si alloy[J]. Materials and Design, 2016, 90: 1151-1158. [9]Zhang P, Song A, Fang Y, et al. A study on the dynamic mechanical behavior and microtexture of 6082 aluminum alloy under different direction[J]. Vacuum, 2020, 173: 109119. [10]王家毅, 米振莉, 李 辉, 等. 基于热加工图6082铝合金锻造工艺优化及强化机制研究[J]. 稀有金属, 2019, 43(2): 113-121. Wang Jiayi, Mi Zhenli, Li Hui, et al. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map[J]. Rare Metals, 2019, 43(2): 113-121. [11]邓 鹏, 孙红亮, 陈志元, 等. T5态7N01铝合金挤压型材的组织及拉伸性能各向异性[J]. 金属热处理, 2020, 45(3): 7-10. Deng Peng, Sun Hongliang, Chen Zhiyuan, et al. Microstructure and anisotropy tensile properties of T5 state 7N01 aluminum alloy extruded profile[J]. Heat Treatment of Metals, 2020, 45(3): 7-10. [12]李旺珍, 孙有平, 何江美, 等. Al-Cu-Mg-Sc合金组织与性能的各向异性[J]. 金属热处理, 2020, 45(6): 119-123. Li Wangzhen, Sun Youping, He Jiangmei, et al. Anisotropy of microstructure and properties of Al-Cu-Mg-Sc alloy[J]. Heat Treatment of Metals, 2020, 45(6): 119-123. [13]王 冠, 田昌龄, 寇琳媛, 等. 6063铝合金双道次热变形微观组织演变[J]. 金属热处理, 2020, 45(5): 23-28. Wang Guan, Tian Changling, Kou Linyuan, et al. Microstructure evolution of 6063 aluminum alloy during double-pass hot deformation[J]. Heat Treatment of Metals, 2020, 45(5): 23-28. [14]Qian F, Zhao D, Mørtsell E A, et al. Enhanced nucleation and precipitation hardening in Al-Mg-Si (-Cu) alloys with minor Cd additions[J]. Materials Science and Engineering: A, 2020, 792: 139698. [15]Yang Q, Dong Y, Zhang Z, et al. Flow behavior and microstructure evolution of 6A82 aluminium alloy with high copper content during hot compression deformation at elevated temperatures[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 649-657. [16]Zhang H, Li L, Yuan D, et al. Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures[J]. Materials Characterization, 2007, 58(2): 168-173. |