[1]王 利, 杨雄飞, 陆匠心. 汽车轻量化用高强度钢板的发展[J]. 钢铁, 2006, 41(9): 1-6. Wang Li, Yang Xiongfei, Lu Jiangxin. Development of high strength steel sheets for lightweight automobile[J]. Iron and Steel, 2006, 41(9): 1-6. [2]李枝梅, 代永娟. 汽车用TWIP钢性能的研究进展[J]. 材料热处理学报, 2019, 42(3): 1-7. Li Zhimei, Dai Yongjuan. Research progress on properties of TWIP steel for automobile[J]. Transactions of Materials and Heat Treatment, 2019, 42(3): 1-7. [3]Bouaziz O, Zurob H, Huang M. Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Research International, 2013, 84(10): 937-947. [4]Grassel O, Kriiger L, Frommeyer G, et al. High strength Fe-Mn-(Al,Si)trip/twip steels development-properties-application[J]. International Journal of Plasticity, 2000, 16(10): 1391-1409. [5]代永娟, 米振莉, 唐 荻, 等. Fe-Mn-C 系TWIP 钢的组织和性能[J]. 上海金属, 2007, 29(5): 132-136 Dai Yongjuan, Mi Zhenli, Tang Di, et al. Microstructure and mechanical properties of the Fe-Mn-C TWIP steel[J]. Shanghai Metals, 2007, 29(5): 132-136. [6]Bouaziz O, Allain S, Scott C, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion Solid State and Materials Science, 2011, 15(4): 141-168. [7]Cooman B C De, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steel[J]. Acta Materialia, 2018, 142: 283-362. [8]Dini G, Najafizadeh A, Ueji R, et al. Improved tensile properties of partially recrystallized submicron grained TWIP steel[J]. Materials Letters, 2010, 64: 15-18. [9]Saha R, Ueji R, Tsuji N. Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel[J]. Scripta Materialia, 2013, 68: 813-816. [10]韩 雨, 李大赵, 申丽媛. 不同退火工艺下TWIP钢微观组织及力学性能演变[J]. 钢铁研究学报, 2019, 31(12): 1092-1099. Han Yu, Li Dazhao, Shen Liyuan. Evolution of microstructure and mechanical properties of TWIP steels in different annealing processes[J]. Journal of Iron and Steel Research, 2019, 31(12): 1092-1099. [11]Zavattieri P D, Savic V, Hector L J. Spatio-temporal characteristics of the Portevin-Le Chtelier effect in austenitic steel with twinning induced plasticity[J]. International Journal of Plasticity, 2009, 25(12): 2298-2330. [12]Wu Y X, Tang D, Jiang H T, et al. Texture and microstructure evolution during tensile testing of TWIP steels with diverse stacking fault energy[J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 713-720. [13]Oh S K, Kilic M E, Seol J B. The mechanism of dynamic strain aging for type A serrations in tensile flow curves of Fe-18Mn-0.55C twinning-induced plasticity steel[J]. Acta Materailia, 2020, 188: 366-375. [14]Koyamaa M, Sawaguchib T, Lee T, et al. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels[J]. Materials Science and Engineering A, 2011, 528: 7310-7316. [15]Bian X, Yuan F, Wu X. Correlation between strain rate sensitivity and characteristics of Portevin-Lechtelier bands in a twinning-induced plasticity steel[J]Materials Science and Engineering A, 2017, 696: 220-227. [16]Zhi H H, Zhang C, Antonova S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel[J]. Acta Materialia, 2020, 195: 371-382. [17]Rahman K M, Vorontsov V A, Dye D. The effect of grain size on the twin initiation stress in a TWIP steel[J]. Acta Materialia, 2015, 89: 247-257. [18]兰 鹏. 汽车用TWIP钢凝固特性与组织性能研究[D]. 北京: 北京科技大学, 2014. Lan Peng. Study on solidification characteristics, microstructure and properties of TWIP Steel for automobile[D]. Beijing: University of Science and Technology Beijing, 2014. [19]Zhao Y H, Zhua Y T, Liao X Z. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation[J]. Materials Science and Engineering A, 2007, 463: 22-26. |