[1]Latthe S S, Terashima C, Nakata K, et al. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf[J]. Molecules, 2014, 19(4): 4256-4283. [2]Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology, 2018, 341: 40-56. [3]Cheng M, Zhang S, Dong H, et al. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4275-4282. [4]Xu Z, Jiang D, Wei Z, et al. Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation[J]. Applied Surface Science, 2018, 427: 253-261. [5]Feng L, Zhang Y A, Xi J M, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119. [6]Zhu H, Hu W, Xu Y, et al. Gradient structure based dual-robust superhydrophobic surfaces with high-adhesive force[J]. Applied Surface Science, 2019, 463: 427-434. [7]Qiu Y, Jiang L, Liu K. Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials[J]. Scientia Sinica Chimica, 2011, 41(2): 403-408. [8]强小虎, 张红霞, 王彦平, 等. 强黏附性超疏水氧化铝的表面结构和黏附机理[J]. 材料工程, 2013(3): 55-60. Qiang Xiaohu, Zhang Hongxia, Wang Yanping, et al. Structure and adhesive mechanism of superhydrophobic alumina surface with high adhesive force[J]. Materials Engineering, 2013(3): 55-60. [9]黄 勇, 张平则, 魏东博, 等. γ-TiAl合金表面辉光等离子Ni-Cr共渗层的组织与性能[J]. 金属热处理, 2012, 37(3): 58-61. Huang Yong, Zhang Pingze, Wei Dongbo, et al. Microstructure and properties of nickel-chromizing layer on γ-TiAl alloy surface by double-glow plasma technique[J]. Heat Treatment of Metals, 2012, 37(3): 58-61. [10]程 东, 高 原, 唐光辉. 3Cr13不锈钢低温双辉等离子渗铬[J]. 金属热处理, 2009, 34(12): 58-60. Cheng Dong, Gao Yuan, Tang Guanghui. Double-glow plasma chromizing at low temperature for 3Cr13 steel[J]. Heat Treatment of Metals, 2009, 34(12): 58-60. [11]杨晶晶, 缪 强, 梁文萍, 等. Ti-2AlNb基O相合金双辉等离子渗碳层摩擦磨损性能[J]. 金属热处理, 2013, 38(6): 110-113. Yang Jingjing, Miu Qiang, Liang Wenping, et al. Friction and wear properties of double glow plasmacarburized layer of Ti2AlNb base O phase alloy[J]. Heat Treatment of Metals, 2013, 38(6): 110-113. [12]Xue Y P, Wang S Q, Bi P, et al. Super-hydrophobic Co-Ni coating with high abrasion resistance prepared by electrodeposition[J]. Coatings, 2019, 9(4): 232-246. [13]Ebert D, Bhushan B. Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles[J]. Journal of Colloid & Interface Science, 2012, 384(1): 182-188. [14]Yuan S, Lin N, Zeng Q, et al. Recent developments in research of double glow plasma surface alloying technology: A brief review[J]. Journal of Materials Research and Technology, 2020, 9(3): 6859-6882. [15]Xue Y P, Wang S Q, Zhao G C, et al. Fabrication of Ni-Co coating by electrochemical deposition with high super-hydrophobic properties for corrosion protection[J]. Surface and Coatings Technology, 2019, 363: 352-361. [16]Bhushan B, Her E K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir, 2010, 26(11): 8207-8217. [17]Lai D L, Kong G, Li X C, et al. Corrosion resistance of ZnO nanorod superhydrophobic coatings with rose petal effect or lotus leaf effect[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(7): 3919-3928. [18]Song Y, Liu Y, Jiang H, et al. Biomimetic super hydrophobic structured graphene on stainless steel surface by laser processing and transfer technology[J]. Surface and Coatings Technology, 2017, 328: 152-160. [19]Lin X, Heo J, Choi M, et al. Simply realizing durable dual Janus superwettable membranes integrating underwater low-oil-adhesive with super-water-repellent surfaces for controlled oil-water permeation[J]. Journal of Membrane Science, 2019, 580: 248-255. [20]Peng Y, Zhu W, Shen S, et al. Strain-induced surface micro/nanosphere structure: A new technique to design mechanically robust superhydrophobic surfaces with rose petal-like morphology[J]. Advanced Materials Interfaces, 2017, 4(20): 1700497-1700505. [21]Su F, Yao K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J]. ACS Appl Mater Interfaces, 2014, 6(11): 8762-8770. [22]Liu Q, Chen D, Kang Z. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy[J]. Acs Applied Materials & Interfaces, 2015, 7(3): 1859-1867. [23]Liu Y C, Zhang P Z, Wei D B, et al. Corrosion behavior of tantalum alloying on γ-TiAl by double-glow plasma surface metallurgy technique[J]. Surface and Interface Analysis, 2017, 49(7): 674-681. |