[1]Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759-1771. [2]Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014, 72-73: 5-8. [3]Gludovatz B, Hihenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [4]Gali A, Georage E P. Tensile properties of high-and medium-entropy alloys[J]. Intermetallics, 2013, 39: 74-78. [5]Anand G, Goodall R, Freeman C L. Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys[J]. Scripta Materialia, 2016, 124: 90-94. [6]Pan J, Dai T, Lu T, et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering A, 2018, 738: 362-366. [7]Juan C C, Tsai M H, Tsai C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 2015, 62: 76-83. [8]Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed highentropy alloys: The effect of entropy[J]. Materials and Design, 2016, 96: 10-15. [9]Takeuchi A, Amiya K, Wada T, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams[J]. JOM, 2014, 66(10): 1984-1992. [10]Feuerbacher M, Heidelmann M, Thomas C. Hexagonal high-entropy alloys[J]. Materials Research Letters, 2015, 3(1): 1-6. [11]陆文杰, 罗 贤, 黄 斌, 等. FCC结构高熵合金的析出强化研究进展[J]. 金属热处理, 2020, 45(9): 1-9. Lu Wenjie, Luo Xian, Huang Bin, et al. Research progress on precipitation strengthening of FCC structure high-entropy alloys[J]. Heat Treatment of Metals, 2020, 45(9): 1-9. [12]贾智轩, 褚延朋, 冯运莉, 等. 高熵合金制备及热处理工艺研究进展[J]. 金属热处理, 2020, 45(10): 17-23. Jia Zhixuan, Chu Yanpeng, Feng Yunli, et al. Research progress in preparation and heat treatment of high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(10): 17-23. [13]高天宇, 乔珺威, 吴玉程. FeMnCoCr系亚稳高熵合金的研究进展[J]. 金属热处理, 2021, 46(4): 1-8. Gao Tianyu, Qian Junwei, Wu Yucheng. Research progress of FeMnCoCr metastable high-entropy alloy[J]. Heat Treatment of Metals, 2021, 46(4): 1-8. [14]He F, Wang Z J, Cheng P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. Journal of Alloys and Compounds, 2016, 656: 284-289. [15]Wang W R, Wang W L, Yeh J W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds, 2014, 589(9): 143-152. [16]斯松华, 周方颖, 王建国. 冷轧及热处理对Al0.3CoCrFeNi高熵合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 103-108. Si Songhua, Zhou Fangying, Wang Jianguo. Effects of cold rolling and heat treatment on microstructure and properties of Al0.3CoCrFeNi high entropy alloy[J]. Heat Treatment of Metals, 2020, 45 (3): 103-108. [17]Shun T T, Chang L Y, Shiu M H. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys[J]. Materials Characterization, 2012, 556: 170-174. [18]He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196. [19]Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure[J]. Materials Today Nano, 2018, 4: 46-53. [20]Gludovatz B, Hohenwarter A, Thurston K, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications, 2016, 7(1): 1-8. [21]Li D, Li C, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J]. Acta Materialia, 2017, 123: 285-294. [22]Bae J W, Seol J B, Moon J, et al. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures[J]. Acta Materialia, 2018, 161: 388-399. [23]武雅桃, 黄德军, 杨慧君, 等. 不完全再结晶Fe40Mn10Cr25Ni25高熵合金的室温及低温力学性能[J]. 金属热处理, 2021, 46(6): 160-167. Wu Yatao, Huang Dejun, Yang Huijun, et al. Room temperature and cryogenic temperature mechanical properties of partially recrystallized Fe40Mn10Cr25Ni25 high-entropy alloy[J]. Heat Treatment of Metals, 2021, 46(6): 160-167. [24]Yong Z A, Ttz A, Zhi T B, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [25]王 重, 林万明, 马胜国, 等. 冷轧对Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响[J]. 材料工程, 2015, 43(8): 50-55. Wang Zhong, Li Wanming, Ma Shengguo, et al. Effect of cold rolling on microstructures and mechanical properties of Al10Cu25Co20Fe20Ni25 high-entropy alloys[J]. Journal of Materials Engineering, 2015, 43(8): 50-55. [26]Smith T M, Hooshmand M S, Esser B D, et al. Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy[J]. Acta Materialia, 2016, 110: 352-363. [27]张晓宇, 钟 军, 赵 军, 等. 中等轧制变形对304不锈钢退火孪晶界及晶粒尺寸的影响[J]. 沈阳理工大学学报, 2020(1): 6-9. Zhang Xiaoyu, Zhong Jun, Zhao Jun, et al. Effect of medium rolling deformation on the annealing twin boundary and the grain size in 304 stainless steel[J]. Journal of Shengyang Ligong University, 2020(1): 6-9. [28]王志新, 周家臣, 马明星, 等. 退火对AlCoCrFeMnTi高熵合金相组成与显微形貌的影响[J]. 金属热处理, 2020, 45(4): 144-148. Wang Zhixin, Zhou Jiachen, Ma Mingxing, et al. Effect of annealing on phase composition and morphology of AlCoCrFeMnTi high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(4): 144-148. [29]张 彝, 谷 臻, 高帅龙, 等. 激光熔覆AlxNbMn2FeMoTi0.5高熵合金涂层的组织与性能[J]. 金属热处理, 2021, 46(6): 146-152. Zhang Yi, Gu Zhen, Gao Shuailong, et al. Microstructure and properties of laser clad AlxNbMn2FeMoTi0.5 high-entropy alloy composite coatings[J]. Heat Treatment of Metals, 2021, 46(6): 146-152. [30]李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175. Li Heqi, Wang Xiaomin, Zeng Hongyan. Effect of heat treatment onmicrostructure and mechanical properties of FeCrMnNiCox alloy[J]. Journal of Materials Engineering, 2020, 48(6): 170-175. [31]薛雨杰, 李双元, 王正品, 等. 热轧对CoCrNi中熵合金微观组织和性能的影响[J]. 西安工业大学学报, 2019, 39(2): 179-184. Xue Yujie, Li Shuangyuan, Wang Zhengpin, et al. Effect of hot rolling on microstructure and mechanical properties of medium entropy alloy in CoCrNi[J]. Journal of Xi'an Technological University, 2019, 39(2): 179-184. [32]Moon J, Tabachnikova E, Shumilin S, et al. Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures[J]. Materials Today, 2021, 50: 55-68. |