[1]甄玉刚. 时效处理对Al-Zn-Mg-Cu合金组织和性能的影响[J]. 热加工工艺, 2018, 47(8): 186-188. Zhen Yugang. Effect of aging treatment on microstructure and properties of Al-Zn-Mg-Cu alloy[J]. Hot Working Technology, 2018, 47(8): 186-188. [2]张树国, 裴桓伟, 杨湘杰. Al-Zn-Mg-Cu合金半固态成形的研究现状与应用[J]. 精密成形工程, 2020, 12(3): 67-73. Zhang Shuguo, Pei Huanwei, Yang Xiangjie. Research status and application of semi-solid forming of Al-Zn-Mg-Cu alloy[J]. Journal of Netshape Forming Engineering, 2020, 12(3): 67-73. [3]Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19): 5775-5799. [4]王国军, 王祝堂. 铝合金在中国民用航空器上的应用[J]. 轻合金加工技术, 2017, 45(11): 1-11. Wang Guojun, Wang Zhutang. Application of aluminum alloy on China's civil aircraft[J]. Light Alloy Fabrication Technology, 2017, 45(11): 1-11. [5]Li Chunmei, Chen Zhiqian, Zeng Sumin, et al. Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys[J]. Science China (Technological Sciences), 2013, 56(11): 2827-2838. [6]Wang Z, Jiang H, Li H, et al. Effect of solution-treating temperature on the intergranular corrosion of a peak-aged Al-Zn-Mg-Cu alloy[J]. Journal of Materials Research and Technology, 2020, 9(3): 6497-6511. [7]李 海, 韦玉龙, 王芝秀. 固溶处理温度对峰值时效7050铝合金晶间腐蚀敏感性的影响[J]. 中国有色金属学报, 2019, 29(10): 2225-2235. Li Hai, Wei Yulong, Wang Zhixiu. Effect of solution-treating temperature on intergranular corrosion of peak-aged 7050 Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(10): 2225-2235. [8]Zhang Zhen, Deng Yunlai, Ye Lingying, et al. Effect of multi-stage aging treatments on the precipitation and mechanical properties of Al-Zn-Mg alloys[J]. Materials Science and Engineering A, 2020, 785: 139394. [9]徐戊矫, 唐农杰, 江长友, 等. 双级固溶双级时效处理对7050铝合金组织与性能的影响[J]. 热加工工艺, 2018, 47(8): 226-229. Xu Wujiao, Tang Nongjie, Jiang Changyou, et al. Effects of two-step solution and two-step aging treatmenton on microstructures and properties of 7050 Al alloys[J]. Hot Working Technology, 2018, 47(8): 226-229. [10]Han N M, Zhang X M, Liu S D, et al. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050[J]. Journal of Alloys and Compounds, 2011, 509(10): 4138-4145. [11]Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part II. Microstructure and mechanical properties[J]. Materials Science and Engineering A, 2012, 534: 244-252. [12]Yang X B, Chen J H, Liu J Z, et al. Spherical constituent particles formed by a multistage solution treatment in Al-Zn-Mg-Cu alloys[J]. Materials Characterization, 2013, 83: 79-88. [13]姜中涛, 汪 鑫, 周志明, 等. 7050铝合金锻件固溶处理工艺优化研究[J]. 精密成形工程, 2021, 13(6): 112-116. Jiang Zhongtao, Wang Xin, Zhou Zhiming, et al. Optimization of solution treatment process for 7050 aluminum alloy forgings [J]. Journal of Netshape Forming Engineering, 2021, 13(6): 112-116. [14]Wang Weiyi, Pan Qinglin, Wang Xiangdong, et al. Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2020, 845: 156286. [15]徐戊矫, 龚利华, 王玉松, 等. 强化固溶7050铝合金组织与性能的影响[J]. 金属热处理, 2015, 40(4): 57-60, 61. Xu Wujiao, Gong Lihua, Wang Yusong, et al. Effect of strengthening-solid-solution on microstructure and properties of 7050 aluminum alloy[J]. Heat Treatment of Metals, 2015, 40(4): 57-60, 61. [16]Lin Y C, Zhang J L, Guan L, et al. Effects of pretreatments on aging precipitates and corrosion resistance of a creep aged Al-Zn-Mg-Cu alloy[J]. Materials Design, 2015, 83: 866-875. |