[1]唐中杰, 郭铁明, 付 迎, 等. 镍基高温合金的研究现状与发展前景[J]. 金属世界, 2014(1): 36-40. Tang Zhongjie, Guo Tieming, Fu Ying, et al. Research present situation and the development prospect of nickel-based superalloy[J]. Metal World, 2014(1): 36-40. [2]张北江, 赵光普, 张文云, 等. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015, 51(10): 1227-1234. Zhang Beijiang, Zhao Guangpu, Zhang Wenyun, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques[J]. Acta Metallurgica Sinica, 2015, 51(10): 1227-1234 [3]张冬梅, 国振兴, 邰清安, 等. 固溶温度对GH2787合金组织性能的影响[J]. 材料与冶金学报, 2016, 15(3): 220-224. Zhang Dongmei, Guo Zhenxing, Tai Qing'an, et al. Influence of solid solution temperature on microstructures and properties for a GH2787 alloy[J]. Journal of Materials and Metallurgy, 2016, 15(3): 220-224. [4]陈佳语, 于秋颖, 董建新, 等. GH720Li合金γ′相回溶过程对后续析出的遗传影响[J]. 稀有金属材料与工程, 2017, 46(10): 2929-2935. Chen Jiayu, Yu Qiuying, Dong Jianxin, et al. Heredity effect of γ′ phase dissolution process on precipitating process in GH720Li[J]. Rare Metal Materials and Engineering, 2017, 46(10): 2929-2935. [5]Jian M, Chang K M, Yang W, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI[J]. Metallurgical and Materials Transactions A, 2001, 32(10): 2441-2452. [6]田高峰, 贾成厂, 刘建涛, 等. 固溶冷却介质对FGH96合金γ′相和性能的影响[J]. 材料工程, 2006(12): 24-27. Tian Gaofeng, Jia Chengchang, Liu Jiantao, et al. Effect of cooling medium on γ′ precipitates and properties in FGH96 alloy[J]. Journal of Materials Engineering, 2006(12): 24-27. [7]Han G, Li F, Sun B. Multimodal distribution of γ′ phase and effect on hot deformation in a wrought nickel base superalloy[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2821-2828. [8]彭志江, 乐献刚, 张明俊, 等. 固溶冷却速率对镍基高温合金K444组织和力学性能的影响[J]. 金属热处理, 2015, 40(2): 163-168. Peng Zhijiang, Yue Xiangang, Zhang Mingjun, et al. Effects of solution cooling rate on microstructure and mechanical properties of nickel base superalloy K444[J]. Heat Treatment of Metals, 2015, 40(2): 163-168. [9]陈国良. 高温合金学[M]. 北京: 冶金工业出版社, 1988. [10]郑 亮, 许文勇, 刘 娜, 等. 高温合金差示扫描量热分析(DSC)的影响因素研究: 升降温速率和取样部位[J]. 稀有金属材料与工程, 2018, 47(2): 530-537. Zheng Liang, Xu Wenyong, Liu Na, et al. Influencing factors on differential scanning calorimetry (DSC) analysis of superalloy: Heating/cooling rate and sampling position[J]. Rare Metal Materials and Engineering, 2018, 47(2): 530-537. [11]Zhu Q, Wang C, Qin H, et al. Effect of the grain size on the microtensile deformation and fracture behaviors of a nickel-based superalloy via EBSD and in-situ synchrotron radiation X-ray tomography[J]. Materials Characterization, 2019, 156: 109875. [12]Mao J, Chang K M, Yang W, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT[J]. Materials Science and Engineering A, 2002, 332(1): 318-329. [13]Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness[J]. Materials Science and Engineering A, 2011, 529: 62-73. [14]Sanders P G, Youngdahl C J, Weertman J R. The strength of nanocrystalline metals with and without flaws[J]. Materials Science and Engineering A, 1997, 234/236: 77-82. |