[1]曹燕光. 渗碳齿轮钢淬透性及其热处理变形和疲劳性能研究[D]. 北京: 钢铁研究总院, 2017. [2]王晓英, 颜慧成, 仇圣桃. 基于微观偏析模型的Mn-Cr系齿轮钢淬透性带宽[J]. 钢铁, 2016, 51(10): 54-61. Wang Xiaoying, Yan Huicheng, Qiu Shengtao. Hardenability bandwidth of Mn-Cr gear steel based on microsegregation model[J]. Iron and Steel, 2016, 51(10): 54-61. [3]余柏海. 计算淬透性及机械性能的非线性方程[J]. 钢铁, 1985, 20(3): 40-49. Yu Baihai. Nonlinear equations for calculating hardenability and mechanical property[J]. Iron and Steel, 1985, 20(3): 40-49. [4]《机械工程手册》编委会. 机械工程手册(3)[M]. 2版. 北京: 机械工业出版社, 1996. [5]美国金属学会. 金属手册(1)[M]. 9 版. 北京: 机械工业出版社, 1998. [6]Huang G, Huang G B, Song S, et al. Trends in extreme learning machines: A review[J]. Neural Networks, 2015, 61: 32-48. [7]晏梦凡. 改进的多隐藏层极限学习机及其应用[D]. 湘潭: 湘潭大学, 2020. [8]Gao Xiuhua, Qi Kemin, Deng Tianyong, et al. Application of artificial neural network to predicting hardenability of gear steel[J]. Journal of Iron and Steel Research(International), 2006(6): 71-73. [9]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. [10]Kasun L, Zhou H, Huang G B, et al. Representational learning with ELMs for big data[J]. Intelligent Systems, IEEE, 2013, 28(6): 31-34. [11]Tang J, Deng C, Huang G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(4): 809-821. [12]余柏海. 钢的计算机设计及冶炼成分微调[J]. 特殊钢, 1997, 18(5): 45-48. Yu Bohai. Computer designing of steel and precise analysis control during melting[J]. Special Steel, 1997, 18(5): 45-48. |