[1]张 敏. 基于国际竞争的我国海洋文化发展战略研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. Zhang Ming. Study on the development strategy of Marine culture in China based on international competition[D]. Harbin: Harbin Engineering University, 2012. [2]赵曙明, 沈显峰, 杨家林, 等. 水雾化316L不锈钢选区激光熔化致密度与组织性能研究[J]. 应用激光, 2017, 37(3): 319-326. Zhao Shuming, Shen Xianfeng, Yang Jialin, et al. Study on density and microstructure properties of water atomized 316L stainless steel by selective laser melting[J]. Applied Laser, 2017, 37(3): 319-326. [3]戴雨华, 刘行健, 李中伟, 等. 选择性激光熔化316L不锈钢在不同成形策略下的冲击性能研究[J]. 实验力学, 2018, 33(4): 543-550. Dai Yuhua, Liu Xingjian, Li Zhongwei, et al. Study on impact properties of 316L stainless steel by selective laser melting under different forming strategies[J]. Journal of Experimental Mechanics, 2018, 33(4): 543-550. [4]李鹏涛, 刘金旺, 罗 贤, 等. 生物医用316L奥氏体不锈钢的形变组织[J]. 金属热处理, 2021, 46(12): 162-167. Li Pengtao, Liu Jinwang, Luo Xian, et al. Deformation microstructures of biomedical 316L austenitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(12): 162-167. [5]Almangour B, Kim Y K, Grzesiak D, et al. Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by selective laser melting[J]. Composites Part B: Engineering, 2019, 156(1): 51-63. [6]Radhamani A V, Lau H C, Kamaraj M, et al. Structural, mechanical and tribological investigations of CNT-316 stainless steel nanocomposites processed via spark plasma sintering[J]. Tribology International, 2020, 152: 106524. [7]杨子安, 相志磊, 陈子勇, 等. TiB2/Al-Si-Mg-Er复合材料的组织与性能[J]. 金属热处理, 2020, 45(12): 142-148. Yang Zi'an, Xiang Zhilei, Chen Ziyong, et al. Microstructure and properties of TiB2/Al-Si-Mg-Er composite[J]. Heat Treatment of Metals, 2020, 45(12): 142-148. [8]郭 锋. MoS2-316L复合材料微结构演化及摩擦学特性研究[D]. 鞍山: 辽宁科技大学, 2019. Guo Feng. Microstructure evolution and tribological properties of MoS2-316L composites[D]. Anshan: University of Science and Technology Liaoning, 2019. [9]张莎莎. TiC颗粒增强316L不锈钢复合材料选区激光熔化制备及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. Zhang Shasha. Preparation and properties of TiC particles reinforced 316L stainless steel composite by selective laser melting[D]. Harbin: Harbin Engineering University, 2019. [10]AlMangour B, Kim Y K, Grzesiak D, et al. Novel TiB2 reinforced 316L stainless steel nanocomposites with excellent room and high-temperature yield strength developed by selective laser melting[J]. Composites Part B: Engineering, 2018(156): 51-63. [11]Wu C L, Zhang S, Zhang C H, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition[J]. Optics and Laser Technology, 2019, 115: 134-139. [12]Liu W D, Chen Z G, Zou J. Eco-friendly higher manganese silicide thermoelectric materials: Progress and future challenges[J]. Advanced Energy Materials, 2018, 8(19): 1800056. [13]Lin J W, Chen F D, Tang X B, et al. Radiation-induced swelling and hardening of 316L stainless steel fabricated by selected laser melting[J]. Vacuum, 2020, 174: 109183. [14]马 威. 选区激光熔化GH4169成形件表面质量和致密度研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. Ma Wei. Study on surface quality and density of GH4169 formed by selective laser melting[D]. Harbin: Harbin Institute of Technology, 2017. [15]孙 靖, 朱小刚, 李 鹏, 等. 激光体能量密度对激光选区熔化成形TC4钛合金致密化行为的影响[J]. 机械工程材料, 2020, 44(1): 51-56. Sun Jing, Zhu Xiaogang, Li Peng, et al. Effect of laser energy density on densification behavior of TC4 titanium alloy formed by laser selective melting[J]. Materials for Mechanical Engineering, 2020, 44(1): 51-56. [16]Sun G F, Shen X T, Wang Z D, et al. Laser metal deposition as repair technology for 316L stainless steel: Influence of feeding powder compositions on microstructure and mechanical properties[J]. Optics and Laser Technology, 2019, 109: 71-83. [17]王 爽. 新型奥氏体不锈钢微观组织及电化学腐蚀性能研究[D]. 秦皇岛: 燕山大学, 2020. Wang Shuang. Microstructure and electrochemical corrosion properties of new austenitic stainless steels[D]. Qinhuangdao: Yanshan University, 2020. [18]Liu X, Wu M P, Lu P P, et al. Corrosion behavior of GO-reinforced TC4 nanocomposites manufactured by selective laser melting[J]. Materials and Corrosion, 2020, 71(4): 628-636. [19]Kale A B, Kim B K, Kim D I, et al. An investigation of the corrosion behavior of 316L stainless steel fabricated by SLM and SPS techniques[J]. Materials Characterization, 2020, 163: 110204. [20]Andani M T, Dehghani R, Karamooz-ravari M R, et al. Patter formation in selective laser melting process using multi-laser technology[J]. Materials and Design, 2017, 131: 460-469. [21]李淮阳, 黎振华, 杨 睿, 等. 选区激光熔化金属表面成形质量控制的研究进展[J]. 表面技术, 2020, 49(9): 118-124, 156. Li Huaiyang, Li Zhenghua, Yang Rui, et al. Research progress on quality control of metal surface formed by selective laser melting[J]. Surface Technology, 2020, 49(9): 118-124, 156. [22]Wang G Q, Liu Q, Rao H, et al. Influence of porosity and microstructure on mechanical and corrosion properties of a selectively laser melted stainless steel[J]. Journal of Alloys and Compounds, 2020, 831: 154815. [23]赖 莉, 徐震霖, 何宜柱. 热处理对SLM 18Ni300马氏体时效钢组织及腐蚀性能的影响[J]. 表面技术, 2019, 48(12): 328-335. Lai Li, Xu Zhenglin, He Yizhu. Effect of heat treatment on microstructure and corrosion properties of 18Ni300 maraging steel by selective laser melting[J]. Surface Technology, 2019, 48(12): 328-335. |