[1]公安部. 今年上半年新注册登记机动车1871万辆[OL]. https://app.mps gov.cn/gdnps/pc/content.jsp?id=7993932, 2021-07-06. [2]汪 淼, 张 聪, 胡 锋, 等. 相变诱导塑性汽车用钢的发展现状与趋势[J]. 钢铁研究学报, 2016(8): 1-7. Wang Miao, Zhang Cong, Hu Feng, et al. Current status and trend of TRIP automotive steels[J]. Journal of Iron and Steel Research, 2016(8): 1-7. [3]唐 荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1-5. Tang Di, Mi Zhenli, Chen Yulai. Technology and research and development of advanced automobile steel abroad[J]. Iron & Steel, 2005, 40(6): 1-5. [4]张磊峰, 宋仁伯, 赵 超, 等. 新型汽车用钢——低密度高强韧钢的研究进展[J]. 材料导报, 2014, 28(19): 111-118, 129. Zhang Leifeng, Song Renbo, Zhao Chao, et al. Research progress of new automotive steel—Low-density high strength-toughness steel[J]. Materials Review, 2014, 28(19): 111-118, 129. [5]Zhao Chao, Song Renbo, Zhang Leifeng, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel[J]. Materials & Design, 2016(91): 348-360. [6]蔡志辉, 丁 桦, 薛 鑫. 新型中锰热轧TRIP钢组织演变及力学性能[J]. 东北大学学报(自然科学版), 2013, 34(1): 62-65, 70. Cai Zhihui, Ding Hua, Xue Xin. Microstructure evolution and mechanical properties of a novel medium-Mn hot-rolled TRIP steel[J]. Journal of Northeastern University(Natural Science), 2013, 34(1): 62-65, 70. [7]王英虎. 固溶温度对Fe-12Mn-8.5Al-0.8C低密度钢组织及力学性能的影响[J]. 金属热处理, 2019, 44(8): 185-191. Wang Yinghu. Effect of solid-solution temperature on microstructure and tensile properties of Fe-12Mn-8.5Al-0.8C low-density steel[J]. Heat Treatment of Metals, 2019, 44(8): 185-191. [8]张东梅, 冯运莉, 曹 阔. Fe-0.4C-2Mn-4Al系δ-TRIP钢组织与力学性能研究[J]. 钢铁钒钛, 2020, 41(2): 142-146. Zhang Dongmei, Feng Yunli, Cao Kuo. Microstructure and mechanical properties of Fe-0.4C-2Mn-4Al system δ-TRIP steel[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 142-146. [9]Pramanik S, Suwas S. Low-density steels: The effect of Al addition on microstructure and properties[J]. JOM, 2014, 66: 1868-1876. [10]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Research International, 2006, 77: 627-633. [11]杨丽芳, 魏焕君, 孙 力, 等. 退火温度对冷轧中锰钢组织性能和断裂行为的影响[J]. 钢铁, 2019, 54(11): 80-87, 100. Yang Lifang, Wei Huanjun, Sun Li, et al. Effect of annealing temperatures on microstructures, mechanical properties and fracture behavior of a cold-rolled medium-Mn steel[J]. Iron & Steel, 2019, 54(11): 80-87, 100. [12]余鹏飞, 胡钱钱, 夏培康, 等. Fe15Mn0.8C-Al-Si热轧轻质高强钢的组织与性能[J]. 上海金属, 2017, 39(1): 33-37, 43. Yu Pengfei, Hu Qianqian, Xia Peikang, et al. Microstructure and mechanical properties of hot rolled Fe15Mn0.8C-Al-Si light-weight high strength steel[J]. Shanghai Metals, 2017, 39(1): 33-37, 43. [13]严 玲, 唐 荻, 米振莉, 等. 不同加工工艺对高强高塑性TWIP钢组织与性能的影响[J]. 热加工工艺, 2005(8): 15-17. Yan Ling, Tang Di, Mi Zhenli, et al. Effect of working processes on microstructure and mechanical property of TWIP steel with high strength and high plasticity[J]. Hot Working Technology, 2005(8): 15-17. [14]Xiong X C, Sun L, Wang J F, et al. Properties assessment of the first industrial coils of low-density duplex δ-TRIP steel[J]. Materials Science & Technology, 2016, 32(13): 1403-1408. [15]许立雄. Fe-Mn-Al系轻质低温钢的组织调控及强韧化机理研究[D]. 北京: 北京科技大学, 2019. Xu Lixiong. Study on microstructure control and strengthening-toughening mechanism of Fe-Mn-Al light-weight cryogenic steel[D]. Beijing: University of Science and Technology Beijing, 2019. [16]胡智评, 许云波, 刘 慧, 等. 含δ-铁素体Mn-Al系TRIP钢冷轧退火过程的组织性能[J]. 材料研究学报, 2018, 32(3): 177-183. Hu Zhiping, Xu Yunbo, Liu Hui, et al. Microstructure evolution and mechanical properties of cold-rolled Mn-Al TRIP steel with δ ferrite[J]. Chinese Journal of Materials Research, 2018, 32(3): 177-183. |