[1]Kumar P, Ramamurty U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti-6Al-4V alloy[J]. Acta Materialia, 2019, 169: 45-59. [2]王大勇, 张连勇, 谌 岩, 等. 高压高温处理对TC4钛合金微观力学性能的影响[J]. 金属热处理, 2016, 41(2): 143-146. Wang Dayong, Zhang lianyong, Shen Yan, et al. Effect of high pressure high temperature treatment on micro-mechanical properties of TC4 alloy[J]. Heat Treatment of Metals, 2016, 41(2): 143-146. [3]Yan X, Chen C, Huang C, et al. Effect of at treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2018, 764: 1056-1071. [4]Cain V, Thijs L, Humbeeck J V, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing, 2015, 5: 68-76. [5]肖美立, 昝 林, 柯林达, 等. 退火工艺对激光选区熔化成形Ti6Al4V合金组织及室温力学性能的影响[J]. 金属热处理, 2020, 45(8): 108-112. Xiao Meili, Zan Lin, Ke Linda, et al. Effect of annealing process on microstructure and room temperature mechanical properties of selective laser melted Ti6Al4V alloy[J]. Heat Treatment of Metals, 2020, 45(8): 108-112. [6]Liu S, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials and Design, 2019, 164: 1-23. [7]Kumar P, Prakash O, Ramamurty U. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V[J]. Acta Materialia, 2018, 154: 246-260. [8]周 俊, 云 忠, 汤晓燕, 等. 热处理对激光选区熔融TC4合金性能的影响[J]. 金属热处理, 2018, 43(10): 138-142. Zhou Jun, Yun Zhong, Tang Xiaoyan, et al. Influence of heat treatment on performance of TC4 alloy manufactured by selective laser melting[J]. Heat Treatment of Metals, 2018, 43(10): 138-142. [9]肖振楠, 刘婷婷, 廖文和, 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9): 87-95. Xiao Zhennan, Liu Tingting, Liao Wenhe, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Laser, 2017, 44(9): 87-95. [10]邵 冲, 尹法杰, 朱小平, 等. 热等静压对铸件致密化及组织演变机理的影响研究[J]. 粉末冶金工业, 2016, 26(2): 63-67. Shao Chong, Yin Fajie, Zhu Xiaoping, et al. Effect of hot isostatic pressing on densification and microstructure evolution mechanism of castings[J]. Powder Metallurgy Industry, 2016, 26(2): 63-67. [11]Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303-3312. [12]Ali H, Ma L, Ghadbeigi H, et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V[J]. Materials Science and Engineering A, 2017, 695: 211-220. [13]Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185. [14]张伟祥, 唐超兰, 陈志茹, 等. 退火温度对激光选区熔化成形TC4钛合金组织及力学性能的影响[J]. 金属热处理, 2019, 44(6): 122-127. Zhang Weixiang, Tang Chaolan, Chen Zhiru, et al. Effect of annealing temperature on microstructure and mechanical properties of TC4 titanium alloy formed by laser selective melting[J]. Heat Treatment of Metals, 2019, 44(6): 122-127. [15]徐戊矫, 谭玉全, 龚利华, 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响[J]. 稀有金属材料与工程, 2016, 45(11): 2932-2936. Xu Wujiao, Tan Yuquan, Gong Lihua, et al. Effects of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2016, 45(11): 2932-2936. |