[1]黄群英, 李春京, 李艳芬, 等. 中国低活化马氏体钢CLAM研究进展[J]. 核科学与工程, 2007, 27(1): 41-50. Huang Qunying, Li Chunjing, Li Yanfen, et al. R&D status of China low activation martensitic steel[J]. Chinese Journal of Nuclear Science and Engineering, 2007, 27(1): 41-50. [2]Zinkle S J, Busby J T. Structural materials for fission & fusion energy[J]. Materials Today, 2009, 12(11): 12-19. [3]Yvon P, Le Flem M, Cabet C, et al. Structural materials for next generation nuclear systems: Challenges and the path forward[J]. Nuclear Engineering and Design, 2015, 294: 161-169. [4]Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. [5]Peng L, Huang Q, Ohnuki S, et al. Swelling of CLAM steel irradiated by electron/helium to 17.5 dpa with 10 appm He/dpa[J]. Fusion Engineering and Design, 2011, 86(9/11): 2624-2626. [6]Gaganidze E, Aktaa J. Assessment of neutron irradiation effects on RAFM steels[J]. Fusion Engineering and Design, 2013, 88(3): 118-128. [7]Tan L, Busby J T. Formulating the strength factor α for improved predictability of radiation hardening[J]. Journal of Nuclear Materials, 2015, 465: 724-730. [8]Jia X, Dai Y, Victoria M. The impact of irradiation temperature on the microstructure of F82H martensitic/ferritic steel irradiated in a proton and neutron mixed spectrum[J]. Journal of Nuclear Materials, 2002, 305(1): 1-7. [9]Klimenkov M, Materna-Morris E, Möslang A. Characterization of radiation induced defects in EUROFER 97 after neutron irradiation[J]. Journal of Nuclear Materials, 2011, 417(1/3): 124-126. [10]Jiao Z, Ham N, Was G S. Microstructure of helium-implanted and proton-irradiated T91 ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2007, 367-370: 440-445. [11]Zhao M Z, Liu P P, Zhu Y M, et al. Effects of hydrogen isotopes in the irradiation damage of CLAM steel[J]. Journal of Nuclear Materials, 2015, 466: 491-495.[12]Lucon E, Chaouadi R, Decréton M. Mechanical properties of the European reference RAFM steel (EUROFER97) before and after irradiation at 300 ℃[J]. Journal of Nuclear Materials, 2004, 329-333: 1078-1082. [13]Terentyev D, He X. Effect of Cr precipitates and He bubbles on the strength of <110> tilt grain boundaries in BCC Fe: An atomistic study[J]. Computational Materials Science, 2011, 50(3): 925-933. [14]Shang J X, Zhao X D, Wang F H, et al. Effects of Co and Cr on bcc Fe grain boundaries cohesion from first-principles study[J]. Computational Materials Science, 2006, 38(1): 217-222. [15]Li N, Fu E G, Wang H, et al. He ion irradiation damage in Fe/W nanolayer films[J]. Journal of Nuclear Materials, 2009, 389(2): 233-238. [16]Abramova M M, Enikeev N A, Valiev R Z, et al. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel[J]. Materials Letters, 2014, 136: 349-352. [17]Tan L, Busby J T. Formulating the strength factor α for improved predictability of radiation hardening[J]. Journal of Nuclear Materials, 2015, 465: 724-730. |