[1]顾玲俐, 吴一梅, 尹立坤, 等. 加氢站流程和配置技术现状与展望[J]. 新能源进展, 2021, 9(5): 418-425. Gu Lingli, Wu Yimei, Yin Likun, et al. Status and prospect of process and configuration technology for hydrogen refueling station [J]. Advances in New and Renewable Energy, 2021, 9(5): 418-425. [2]李霁阳, 贾晓晗, 江若玫, 等. 隔膜压缩机三指数母线膜腔轮廓优化设计[J]. 压缩机技术, 2013(4): 6-10. Li Jiyang, Jia Xiaohan, Jiang Ruomei, et al. Optimization design of diaphragm compressor cavity contour with new generatrix[J]. Compressor Technology, 2013(4): 6-10 [3]李霁阳, 陈嘉豪, 赵海龙, 等. 隔膜压缩机膜片破裂理论分析[J]. 工程力学, 2015, 32(1): 192-197. Li Jiyang, Chen Jiahao, Zhao Hailong, et al. Theoretical analysis of diaphragm fracture in diaphragm compressor[J]. Engineering Mechanics, 2015, 32(1): 192-197. [4]赵盛基. 压缩机膜片破裂原因分析及预防措施[J]. 齐鲁石油化工, 1998(4): 67-69. [5]王兴国, 吴立志, 肖云锋. 隔膜压缩机金属膜片受力变形的分析[J]. 北京石油化工学院学报, 2008, 16(1): 25-30. [6]Djouadi M A, Nouveau C, Banakh O, et al. Stress profiles and thermal stability of CrxNy films deposited by magnetron sputtering[J]. Surface and Coatings Technology, 2002, 151: 510-514. [7]Puchi-Cabrera E S, Matínez F, Herrera I, et al. On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit[J]. Surface and Coatings Technology, 2003, 182(2): 276-286. [8]姜菊生, 许金泉. 金属材料疲劳损伤的电阻研究法[J]. 机械强度, 1999(3): 232-234. Jiang Jusheng, Xu Jinquan. The research of damage in fatigue by means of resistance of metal materials[J]. Journal of Mechanical Strength, 1999(3): 232-234. [9]刘 平. (梯度) (Ti, Al)N涂层对不锈钢基材疲劳性能的影响[D]. 沈阳: 沈阳理工大学, 2008. Liu Ping. Effect of (Graded) (Ti, Al)N coating on fatigue behavior of stainless steel material[D]. Shenyang: Shenyang Ligong University, 2008. [10]宗晓明, 高 飞, 权思佳, 等. 盐浴渗氮对G80Cr4Mo4V高温轴承钢组织与性能的影响[J]. 轴承, 2020(11): 40-44. Zong Xiaoming, Gao Fei, Quan Sijia, et al. Effect of salt bath nitriding on microstructure and properties of G80Cr4Mo4V high temperature bearing steel[J]. Bearing, 2020(11): 40-44. [11]牟鑫斌. 316L奥氏体不锈钢低温渗氮层和低温渗碳层的组织性能研究[D]. 兰州: 兰州理工大学, 2019. Mu Xinbin. Microstructure and properties of low temperature nitriding layer and low temperature carburizing layer of 316L austenitic stainless[D]. Lanzhou: Lanzhou University of Technology, 2019. [12]侯 彬, 李文明. 可控离子渗入(PIP)处理渗层性能研究[J]. 新技术新工艺, 2021, 398(2): 15-18. Hou Bin, Li Wenming. Research on properties of the programmable ion permeation(PIP) processing layer[J]. New Technology and New Process, 2021, 398(2): 15-18. [13]李文明, 罗德福, 韩瑞鹏, 等. 可控离子渗入工艺对304不锈钢组织和耐磨抗蚀性能的影响[J]. 金属热处理, 2019, 44(9): 177-181. Li Wenming, Luo Defu, Han Ruipeng, et al. Effect of programmable ion permeation process on microstructure, and anti-wear anti-corrosion properties of 304 stainless steel[J]. Heat Treatment of Metals, 2019, 44(9): 177-181. [14]罗建东, 杨颖仪, 林育周. 离子扩渗工艺对316L不锈钢表层组织及磁性能的影响[J]. 金属热处理, 2021, 46(7): 207-211. Luo Jiandong, Yang Yingyi, Lin Yuzhou. Effect of plasma diffusion process on surface microstructure and magnetic properties of 316L stainless steel[J]. Heat Treatment of Metals, 2021, 46(7): 207-211. [15]李新蕾, 杨剑群, 刘 勇, 等. 表面氮化对2Cr13不锈钢真空磨损行为的影响[C]//第八届全国表面工程学术会议暨第三届青年表面工程学术论坛. 2010: 118-124. Li Xinlei, Yang Jianqun, Liu Yong, et al. The influence of surface nitriding on wear behavior of 2Cr13 stainless steel in vacuum[C]//The 8th National Surface Engineering Academic Conference and The 3rd Youth Surface Engineering Academic Forum. 2010: 118-124. |