[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Huang P K, Yeh J, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Advanced Engineering Materials, 2004, 6(1/2): 74-78. [3]Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375-377(1/2): 213-218. [4]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [5]Lin C M, Tsai H L, Bor H Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy[J]. Intermetallics, 2010, 18(6): 1244-1250. [6]赵龙志, 喻世豪, 赵明娟, 等. B 对 FeCoCrNiSiBx 高熵合金激光熔覆层组织和硬度的影响[J]. 金属热处理, 2020, 45(10): 187-190. Zhao Longzhi, Yu Shihao, Zhao Mingjuan, et al. Effect of B on microstructure and hardness of FeCoCrNiSiBx high entropy alloy laser clad coating[J]. Heat Treatment of Metals, 2020, 45(10): 187-190. [7]Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Journal of Materials Science, 2012, 47(18): 6522-6534. [8]张 骁, 刘 亮, 商 剑, 等. 热处理对双FCC相CoCrFeNiCu高熵合金组织与性能的影响[J]. 金属热处理, 2021, 46(2): 157-160. Zhang Xiao, Liu Liang, Shang Jian, et al. Effect of heat treatment on microstructure and properties of dual FCC-phase CoCrFeNiCu high entropy alloy[J]. Heat Treatment of Metals, 2021, 46(2): 157-160. [9]Lee C P, Chen Y Y, Hsu C Y, et al. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx[J]. Journal of the Electrochemical Society, 2007, 154(8): 424-430. [10]贾 强. CrFeCoNiTix高熵合金力学性能及耐腐蚀性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2015. [11]赵思杰, 李 航, 牛利冲, 等. Al 含量对热轧 FeMnCoCr 系高熵合金组织和性能的影响[J]. 金属热处理, 2022, 47(5): 47-52. Zhao Sijie, Li Hang, Niu Lichong, et al. Effect of Al content on microstructure and properties of hot rolled FeMnCoCr high entropy alloy[J]. Heat Treatment of Metals, 2022, 47(5): 47-52. [12]Eimann N, Mühle U, Gaitzsch U, et al. Precipitation hardening of high entropy alloy CoCrFeMnNi containing titanium[J]. Journal of Alloys and Compounds, 2020, 857: 157610. [13]卢思颖, 苗军伟, 卢一平. 多主元高熵合金的强韧化[J]. 稀有金属, 2021, 45(5): 530-540. Lu Siying, Miao Junwei, Lu Yiping. Strengthening and toughening of multi-principal high-entropy alloys[J]. Rare Metals, 2021, 45(5): 530-540. [14]Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Materials Transactions, JIM, 1989, 30(12): 965-972. [15]农智升, 张 波, 朱景川. 退火对CrCuFeMnTi高熵合金组织结构和力学性能的影响[J]. 稀有金属材料与工程, 2018, 47(9): 2827-2832.Nong Zhisheng, Zhang Bo, Zhu Jingchuan. Effect of annealing on microstructures and mechanical properties of CrCuFeMnTi high entropy alloy[J]. Rare Metal Materials and Engineering, 2018, 47(9): 2827-2832. [16]付志强, 陈维平, 方思聪. Cr对CoFeNiAl0.6Ti0.4的合金化行为与组织的影响[J]. 稀有金属材料与工程, 2014(10): 2411-2414. Fu Zhiqiang, Chen Weiping, Fang Sicong. Effect of Cr on the alloying behavior and microstructure of CoFeNiAl0.6Ti0.4[J]. Rare Metal Materials and Engineering, 2014(10): 2411-2414. [17]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153-1158. [18]张俊善. 材料的高温变形与断裂[M]. 北京: 科学出版社, 2007. [19]郭建亭. 高温合金材料学(上) 应用基础理论[M]. 北京: 科学出版社, 2008. [20]曲选辉, 何定玉. Laves相铬化物的研究[J]. 高技术通讯, 1996(12): 27-30. Qu Xuanhui, He Dingyu. Research on Laves phase chrominide compounds[J]. Chinese High Technology Letters, 1996(12): 27-30. |