[1]Qin Shunquan, Gao Zongyu. Developments and prospects of long-span high-speed railway bridge technologies in China[J]. Engineering, 2017, 3(6): 23-38. [2]郑凯锋, 张 宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. Zheng Kaifeng, Zhang Yu, Heng Junlin, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 1-10. [3]彭宁琦, 何 航, 罗 登, 等. 高强韧耐候桥梁钢Q500qENH的生产工艺[J]. 金属热处理, 2021, 46(8): 139-144. Peng Ningqi, He Hang, Luo Deng, et al. Production process of high strength and toughness weather-resistant bridge steel Q500qENH[J]. Heat Treatment of Metals, 2021, 46(8): 139-144. [4]易伦雄, 袁 毅, 彭 最. 690 MPa级高性能桥梁钢工程应用[J]. 桥梁建设, 2021, 51(5): 14-19. Yi Lunxiong, Yuan Yi, Peng Zui. Engineering application of 690 MPa high-performance bridge steel[J]. Bridge Construction, 2021, 51(5): 14-19. [5]ASTM A709/A709M—18, Standard specification for structural steel for bridges[S]. [6]熊文娟. Q690桥梁钢实验室TMCP轧制工艺及轧后热处理的研究[D]. 武汉: 武汉科技大学, 2012. [7]陈 康, 左秀荣, 李 源, 等. 调质处理对低碳微合金钢组织与力学性能的影响[J]. 金属热处理, 2014, 39(9): 5-9. Chen Kang, Zuo Xiurong, Li Yuan, et al. Effects of quenching and tempering on microstructure and mechanical properties of low-carbon microalloyed steel[J]. Heat Treatment of Metals, 2014, 39(9): 5-9. [8]张跃飞, 王 坤, 张学峰, 等. 薄规格12MnNiVR储罐钢低屈强比控制策略[J]. 金属热处理, 2022, 47(6): 173-177. Zhang Yuefei, Wang Kun, Zhang Xuefeng, et al. Low yield ratio control strategy for thin 12MnNiVR storage tank steel plate[J]. Heat Treatment of Metals, 2022, 47(6): 173-177. [9]中铁大桥勘测设计院集团有限公司. 武汉江汉七桥工程施工图设计[Z]. 武汉, 2018. China Railway Major Bridge Reconnaissance and Design Institute Co., Ltd. Construction drawings ofwuhan hanjiang 7th bridge[Z]. Wuhan, 2018. [10]镇 凡, 张 宽, 李玉藏, 等. 控轧控冷工艺对低焊接裂纹敏感性高强钢Q800CFE屈强比的影响[J]. 金属热处理, 2015, 40(2): 118-124. Zhen Fan, Zhang Kuan, Li Yucang, et al. Effect of controlled rolling and controlled cooling process on the yield ratio of high strength steel Q800CFE with low welding crack sensibility[J]. Heat Treatment of Metals, 2015, 40(2): 118-124. [11]Zhao H, Wynne B P, Palmiere E J. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling[J]. Materials Characterization, 2017, 123: 128-136. [12]宋韶杰. 扩散型固态相变动力学与热力学研究[D]. 西安: 西北工业大学, 2015. [13]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000. [14]Jiao Benqi, Zhao Qinyang, Zhao Yongqing, et al. The relationship between slip behavior and dislocation arrangement for large-size Mo-3Nb single crystal at room temperature[J]. Journal of Materials Science and Technology, 2021, 92(33): 208-213. [15]Long Xiaoyan, Zhang Ruijie, Zhang Fucheng, et al. Study on quasi-in-situ tensile deformation behavior in medium-carbon carbide-free bainitic steel[J]. Materials Science and Engineering A, 2019, 760: 158-164. [16]霍建生, 阎 冬. 700 MPa级高强度耐候钢过冷奥氏体连续冷却相变行为[J]. 金属热处理, 2021, 46(7): 94-98. Huo Jiansheng, Yan Dong. Continuous cooling transformation behavior of undercooled austenite of 700 MPa high strength weathering resistance steel[J]. Heat Treatment of Metals, 2021, 46(7): 94-98. [17]周松波, 胡 锋, 尹朝朝, 等. 块状组织细化对贝氏体钢断裂行为的影响[J]. 钢铁, 2020, 55(11): 103-111. Zhou Songbo, Hu Feng, Yin Chaochao, et al. Effect of refinement of bulk structure on fracture behavior of bainitic steel[J]. Iron and Steel, 2020, 55(11): 103-111. [18]王 群, 唐 荻, 宋 勇, 等. DP590钢线膨胀测量中相转变体积分数的分析[J]. 金属热处理, 2013, 38(1): 108-112. Wang Qun, Tang Di, Song Yong, et al. Analysis of volume fraction during phase transformation process in linear thermal expansion measurement of dual-phase 590 steel[J]. Heat Treatment of Metals, 2013, 38(1): 108-112. |