[1]Seehra M S, Cionca C, Manivannan A. Thermal expansions of the beta and gamma phases in a Co-Ni-Fe superalloy determined by X-ray diffraction[J]. Journal of Materials Research, 2000, 15(8): 1719-1723. [2]邓 波, 韩光炜, 冯 涤. 低膨胀高温合金的发展及在航空航天业的应用[J]. 航空材料学报, 2003, 23(S1): 244-249. Deng Bo, Han Guangwei, Feng Di. Development of low thermal expansion superalloys and their application in aerospace[J]. Journal of Aeronautical Materials, 2003, 23(S1): 244-249. [3]韩光炜, 敦 博, 杨玉军, 等. 抗氧化低膨胀GH783合金长时组织性能热稳定性研究[J]. 钢铁研究学报, 2011, 23(S2): 278-281. Han Guangwei, Dun Bo, Yang Yujun, et al. Investigation on thermal stability of oxidation resistant low thermal expansion superalloy GH783 after long term thermo-exposure[J]. Journal of Iron and Steel Research, 2011, 23(S2): 278-281. [4]Yamamoto R, Kadoya Y, Kawai H, et al. Alloy design and material properties of Ni-based superalloy with low thermal expansion for steam turbine[J]. Iron and Steel, 2004, 90(1): 37-42. [5]贾新云, 赵宇新, 张绍维. β时效对低膨胀高温合金 GH783组织与性能的影响[J]. 金属热处理, 2007, 32(9): 31-33. Jia Xinyun, Zhao Yuxin, Zhang Shaowei. Effect of β-aging on microstructure and mechanical properties of low expansion superalloy GH783[J]. Heat Treatment of Metals, 2007, 32(9): 31-33. [6]Tundermann J H. Development of Inconel alloy 783, a low thermal expansion, crack growth resistance superalloys[J]. Acta Metallurgica Sinica (English Letters), 1996(6): 503-507. [7]Smith J S, Heck K A. Development of a low thermal expansion crack growth resistant superalloy[C]//Superalloy 1996. Pennsylvania: The Minerals, Metals and Materials Society, 1996: 91-100. [8]Ma L Z, Hang K M. Effects of different metallurgical processing on microstructures and mechanical properties of Inconel alloy 783[J]. Journal of Materials Engineering and Performance, 2004, 13 (1): 32-38. [9]Heck K A, Smith J S, Smith R. Inconel alloy 783: an oxidation resistance, low expansion superalloy for gas turbine application[J]. Journal of Engineering for Gas Turbine and Power, 1998, 120: 1-7. [10]Ma L Z, Chang K M, Mannan S. K. Oxide-induced crack closure: an explanation for abnormal time-dependent fatigue crack propagation behavior in INCONEL alloy 783[J]. Scripta Materialia, 2003, 48: 583-588. [11]沈 治. INCONEL 783 合金的组织与应力驰豫性能研究[D]. 上海: 上海交通大学, 2010. Shen Zhi. Study on the microstructure and stress relaxation behavior of INCONEL alloy 783[D]. Shanghai: Shanghai Jiao Tong University, 2010. [12]张亚辉, 王立民, 胡 日. 固溶后冷却方式对Inconel X-750合金组织和性能的影响[J]. 金属热处理, 2020, 45(1): 105-111. Zhang Yahui, Wang Limin, Hu Ri. Effect of cooling mode on microstructure and properties of solution treated Inconel X-750 alloy. Heat Treatment of Metals, 2020, 45(1): 105-111. [13]胡聘聘, 盖其东, 李相辉, 等. 热处理冷却速度对IN792合金显微组织及持久性能的影响[J]. 金属热处理, 2017, 42(2): 124-130. Hu Pinpin, Gai Qidong, Li Xianghui, et al. Effect of cooling rate in heat treatment on microstructure and stress-rupture properties of IN792 alloy[J]. Heat Treatment of Metals, 2017, 42(2): 124-130. [14]史进渊, 杨 宇, 孙 庆, 等. 超超临界汽轮机技术研究的新进展[J]. 动力工程, 2003(4): 2252-2257. Shi Jinyuan, Yang Yu, Sun Qing, et al. New development in the technique research on ultra supercritical steam turbine[J]. Power Engineering, 2003(4): 2252-2257. [15]刘堂礼. 超临界和超超临界技术及其发展[J]. 广东电力, 2007, 20(1): 19-22. Liu Tangli. Supercritical and ultra supercritical technique and development thereof[J]. Guangdong Electric Power, 2007, 20(1): 19-22. [16]张艳艳. GH783合金组织和性能优化研究[D]. 武汉: 华中科技大学, 2006. Zhang Yanyan. Microstructure and mechanical optimization of GH783 alloy[D]. Wuhan: Huazhong University of Science and Technology, 2006. |