[1]蔡恩泽. 3D打印颠覆传统制造业[J]. 中国中小企业, 2012(11): 46-47. Cai Enze. 3D printing overthrowing traditional manufacturing industry[J]. China Small Medium Enterprises, 2012(11): 46-47. [2]杨延华. 增材制造(3D打印)分类及研究进展[J]. 航空工程进展, 2019, 10(3): 309-318. Yang Yanhua. Analysis of classifications and characteristic of additive manufacturing (3D Print)[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3): 309-318. [3]武王凯, 周琦琛, 费宇宁, 等. 金属3D打印技术研究现状及其趋势[J]. 中国金属通报, 2019(5): 186, 188. Wu Wangkai, Zhou Qichen, Fei Yuning, et al. The research status and trend of metals 3D printing technology[J]. China Metal Bulletin, 2019(5): 186, 188. [4]王新艳, 沈 芳. 3D打印技术综述[J]. 江西化工, 2019(3): 242-243. Wang Xinyan, Shen Fang. Review on 3D printing technology[J]. Jiangxi Chemical Industry, 2019(3): 242-243. [5]许 洋. 金属3D打印技术研究综述[J]. 中国金属通报, 2019(2): 104-105. Xu Yang. Research review on metals 3D printing technology[J]. China Metal Bulletin, 2019(2): 104-105. [6]刘鹏宇. 典型选区激光熔化粉末的特性及其成型件组织结构的研究[D]. 兰州: 兰州理工大学, 2017. Liu Pengyu. Study on the characteristics of laser melting powder and the microstructure of typical parts[D]. Lanzhou: Lanzhou University of Technology, 2017. [7]张雪峰, 李怀学, 胡全栋, 等. 热处理对激光选区熔化GH4169高温合金的组织与拉伸性能的影响[J]. 航空制造技术, 2019, 62(19): 78-85. Zhang Xuefeng, Li Huaixue, Hu Quandong, et al. Effect of heat treatment on the microstructure and tensile properties of GH4169 superalloy fabricated by selective laser melting[J]. Aeronautical Manufacturing Technology, 2019, 62(19): 78-85. [8]Chen K, Rui S Y, Wang F, et al. Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(7): 889-900. [9]程 明, 叶能永, 张士宏. GH4169合金主要塑性加工技术的研究进展[J]. 中国材料进展, 2016, 35(4): 241-250. Cheng Ming, Ye Nengyong, Zhang Shihong. Development of main plastic forming technologies for GH4169 alloy[J]. Materials China, 2016, 35(4): 241-250. [10]路 超. GH4169金属粉末选区激光熔化成型工艺及性能研究[D]. 兰州: 兰州理工大学, 2017. Lu Chao. Research on process and property of selective laser melting with GH4169 metal powder[D]. Lanzhou: Lanzhou University of Technology, 2017. [11]Chen G, Zhang Y, Xu D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 ℃[J]. Materials Science and Engineering A, 2016, 655: 175-182. [12]Lu X D, Du J H, Deng Q. High temperature structure stability of GH4169 superalloy[J]. Materials Science and Engineering A, 2013, 559: 623-628. [13]兰 天. 汽车钢板的疲劳性能研究[D]. 上海: 上海交通大学, 2017. Lan Tian. Study on fatigue property of automobile sheets[D]. Shanghai: Shanghai Jiao Tong University, 2017. [14]杨 旭. 螺栓球节点网架中高强度螺栓M30、M39疲劳性能的试验与理论研究[D]. 太原: 太原理工大学, 2017. Yang Xu. The experimental and theoretical research on fatigue performance of M30 and M39 high strength bolts in grid structures with bolt sphere joints[D]. Taiyuan: Taiyuan University of Technology, 2017. |